学年

教科

質問の種類

物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

下の問題をできるだけ教えてほしいです。雑ですみません。 ホントに何も分からなくて困ってます。お願いします。

【問 1】 点 (zz) における電場が,E = 』十2j で与えられている. この電場を図示せよ. ただし xy 平面上に限定して描く いう0 【問 2】 電荷の分布が以下のような場合, それによって生じる電場分布の形を, 文章と図を用いて答えよ. (1) 半径 。 の球面上に, 一様な電荷密度で分布する. (2) 無限に広い平面上に, 一様な電荷密度で分布する. (3) 無限に長い 半径 。 の円柱内に, 一様な電荷密度で分布する. 【問 3】 0 <ぁ<o を定数とする. 原点を中心とする半径 。 の球体内の, 半径り<ヶ<o の範囲に電荷が電荷密度 ヵ で一様に 分布している. この電荷によって生じる電場 E を求めたい. (1) 電荷の対称性を用いる範囲で, E の分布はどのようになるか, 文章と図で説明せよ. (2) ガウスの法則 pd4 = = な Eo における面 ⑤ (ガウス面) はどのようなものを選べばよいか. 簡単に理由をつけて答えよ. (3) ガウスの法則における電荷項 0j。はどのようになるか答えよ. (4) ガウスの法則を用いて, 原点からの距離 テ における電場の大きさ 万 を求めよ. 【問4】 た= 間 とおく (< 軸方向の基本単位ベクトル gk と混同しないように). 一様な電場 E」 = 2V2i が存在している空 間の原点に, 電荷 go三1 を固定した. G) 点5, *う における電場 EE を求めよ. (⑫) 点(0. 還 3 における電場の大きさ 万 を求めよ. (3) 束 (0. な) に。 電荷9ニー2 を置くとき。gに作用する力F と, その大きさ が を求めよ. 【問 5】 ガウスの法則を用いて, 電荷分布から電場を求める際に考えなければいけないことは何か. 重要と思われることを3点 答えよ-

解決済み 回答数: 1
2/2