学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

1から5の問題が全く持ってわかりません 明日までに解かなければならないので解説してくれる方がいたら嬉しいです

1. 次の式の両辺の各項の次元を調べよ。 但し、は長さの次元、tは時間の次元、mは質量の次元であり、 v を 速度、gを重力加速度、 f を力とする。 力の次元は[f]=MLT-2。 (10) (a) f=mg-ku となるときのの次元を求めよ。 このkを用いた式: mg k の中身の次元を求めよ。 (b) (a) と同じょを用いた式: 4.2 次元極座標の速度表示 問題 2. ある物体が2次元上を運動し、そのx,y座標が時間tの関数として、 r = Acos(wt+a), y = Asin(wt+a) で与えられている。このとき、この物体の速度ベクトルと加速度ベクトルを時間tの関数として求めよ。 (20) 5.2 次元極座標の加速度表示 合には、 der dea と dt d.t 3. 式 (11), (12) の両辺を時間で微分することにより、 去する。) この計算結果でわかる通り、 極座標の基本ベクトルは時間とともに変化する。 (20) v² mg k T = dr dr dt dt do e を導け。 この式でわかるように、 速度の方向成分がの時 dt dr dt 間微分なのに対し、 0 方向成分は、 半径 × 角速度となっている。 等速円運動の場合には、 = 0 なので、 v=rw になる。 (20) m --t t+ (em-1) の次元。 der dt2 -er + r 問題 d²r dt2 になることを示せ。 (30) -t 1-em の次元およびe を計算し、er と e で表せ。 (ex, ey を消 do dr do d²0 r (1) ² } e₁ + {2 d d + ² } er dt dt dt dt2 ee を導け。 等速円運動の場

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理基礎です。 全問解答のみで大丈夫です! よろしくお願いします🙇‍♂️🤲

物理基礎 図1のように、質量1.0kgの滑らかな滑車が天井からつり下げられている。 滑車にひもをかけて、両側にそれぞれ質量mA[kg]のおもり A, 質量mg [kg]の おもりBをつるした。ひもと滑車の間の摩擦はなく, ひもの質量は無視できる 1 ものとする。重力加速度の大きさをg[m/s?]として次の問1~問5に答えなさ い。 問 1.おもりAの質量mAとおもりBの質量mgがともに4.5kg のとき、お もりAとおもりBは静止した。このとき,おもりA側のひもの張力 Tai[N],おもりB側のひもの張力 Tei[N], ならびに天井が受ける力 F[N]を求めなさい。 問 2. おもりの質量を,mA> msに変えてひもにつるし, おもりAに手で上 向きのカ[N]を加えて支えた。このとき,おもりA側のひもの張力 Taa[N], おもりB側のひもの張力カ Tea[N]. ならびに天井が受ける力 Fa[N]を求めなさい。 問 3. 静かに手を離したところ, おもりAが下方に運動を始めた。おもりの加 速度の大きさをa[m/s°], ひもの張力をTA[N]. TB[N]として、 おもり A, おもりBの運動方程式を書きなさい。ただし, 天井は十分高く, おもりは 地面につかないものとする。 問 4. おもりの加速度の大きさ a[m/s°]を, 張力を含まない式で表しなさい。 問 5. おもりの質量がそれぞれ, ma= 5.0kg, ms=4.0kgのとき, おもりの 加速度の大きさ a[m/s°], おもりA側のひもの張力 Tas[N]. おもりB側 のひもの張力TB5[N], ならびに天井が受けるカ F:[N]を求めなさい。 ◆M5(603-40)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解説お願いします。

以下の問題文を統んで, 3 12]の中に適切な式または数値を書きなさい。 「1) 図3-1のように,内部抵抗が無視でき る起電力 E, [V) および Ex [V] をもつ直流電源、 抵抗値52, 2 2, 10 S2 および2.5 2 の抵抗からな る直流回路がある。各抵抗値ならびに起電力 E は常に一定であり,起電力 Eaは可変である。各 起電力は常に正の値をとり, 電流ム (A] ならび に電流 12[A) の符号は,図に示す向きを正とす る。電圧計Vに流れる電流は無視できるものとす る。また,電圧計にかかる電圧をV[V] とする。 (1)最初,スイッチSは閉じており,電流ムならびに電流 I。は, 共に 20A であった。このときの起電力 Eは1]V, 起電力 Eaは2 ]V, 電圧 Vは [3]Vである。 (2) 次に,(1)の状態からスイッチSを開いた。 このときの電流I,は[ Vは[6]Vとなる。 (3) (2)の状態から起電力 E. を調節して, 電圧 Vを(1)の状態と等しい値の3]Vとなるようにした。 このときの起電カ Eaは7]Vであり, 電流ムは8]A, 電流 Jaは9]Aとなる。 [I] 電気容量Ci [F] のコ ンデンサーAと, 電気容量 Ca(F)のコンデンサーB がある。コンデンサー A, Bと直流電源を接続した図 3-2および図3-3の回路 について考える。なお, こ れらの回路は電源と接続してからじゅうぶんな時間が経っているものとする。 (1) 図3-2の回路において, mとnの間の電気容量は, C. および C。を用いて表すと 10 (2) 図3-3の回路において, mとnの間の電気容量は, C. および Caを用いて表すと1]F] である。 (3) 図3-2の直流電源の電圧を4V, 図3-3の直流電源の電圧を 10Vとした。このとき, 図3-2およ び図3-3の回路が持つ静電エネルギーU [J]は共に等しい値であった。これより, コンデンサーAと Bの電気容量の比 (C.: C) を求めると [12] となる。ただし, Ci は Caよりも大きい (C>C) とす る。 S [ 59 |22 |100 |2.59 オ E Ez 図3-1 OA, 電流I。は5]A, 電圧 m- m ココンデンサー A コンデンサーA コンデンサーB G 4V 10V |C |C コンデンサーB Ja n n 図3-2 図3-3 [F]である。

回答募集中 回答数: 0