学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(6)と(8)を教えて頂きたいです。

近軸光線と ためには、鏡の高さはいくら以上なければならないか. [4] 光線が平行平板ガラスを透過するとき, (1) 入射光線と透過光線が平行であることを示せ . [3] 身長 170cm の人が垂直に置かれた鏡の前に立つとき,自分の全身の姿を見る ガラスの屈折率をn, 板の厚さをd,入射角を0とすると, 入射光線と透過 (2) 光線のずれの距離 ▲は A = d cos 0 Vn2 - sin20 光源 -a→o となることを示せ . [3] 図6.15のように,直角に置かれた2枚の鏡がある. それぞれの鏡から距離 α, もの位置に置かれた光源の像を求めよ. の全面積を求めよ.ただし, 水の屈折率を 1.33 とする. [6] 水深 2.75m のプールの底に点光源を沈めた. 光を水面から放出している水面 [7] 半径10cm の水晶の玉の表面から8.0cmの深さのところに,直径 5.0mm の 球形の不純物がある. この不純物を真上から見たとき, 不純物球は表面からどれだけ の深さに、どれくらいの大きさに見えるか.ただし, 水晶の屈折率を1.54 とする. [8] 焦点距離 12 cm の凸レンズと凹レンズの前方に,それぞれ高さ 1.0cm の物体 を置いた。レンズから物体までの距離が次の場合について, 像の① 位置, ② 高さ ③ 実像 虚像の別,および正立・倒立の別を求めよ. (1) 24cm (2) 6cm [9] 凸レンズと凹レンズの結像の公式を, a を横軸, bを縦軸にとってグラフで描け. MG 15 sin 0 眼 ただし, 光線は

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校レベルの物理の問題です。 答えは出したのですが、解答と合わなかったので最後の問題の解き方を教えてください。

空気抵抗とは空気との接触により運動を妨げようとする力のことであり、運動している物体の速さ (速さの1乗) に比例する粘性抵抗と速 さの2乗に比例する圧力抵抗がある。 雨が圧力抵抗のみを受けながら鉛直下向きに落下する様子を考える。 圧力抵抗の比例定数を重 力加速度の大きさをg [m/s²]として以下の問に答えよ。 V 問31 鉛直下向きを正として雨の加速度をa [m/s'] としたとき、 速さ [m/s]で落下している雨滴の運動方程式はどのように記述され るか。 適切なものを1つ選べ [31] ① ma = mg + kv² (2) ma=-kv (3) ma = -kv² (6) ma=mg- ・kv (7) ma = mg-kv² ⑧ ma-mg 問32 比例定数kの単位はSI単位でどのように表されるか。 適切なものを1つ選べ。 [32] ① N·m ②N・s ③kg·m ⑥ N/m ⑦ N/s ⑧kg/m ①kmg mg k ② 月 33 雨滴は地表付近では等速度運動をする。 そのときの速度 (終端速度) Pt [m/s] として適切なものはどれか。 1つ選べ。 [33] mg -1 (半径に反比例) img k 5 1 (半径の1乗に比例) ④kg's ⑨kg/s 1km g 30 (半径に関わらず一定) 4 ⑧ 0 34 圧力抵抗の比例定数kはp を空気の密度、S を物体の断面積として、以下の関係がある。 x=2/cos CpS 4 ma = kv 9 ma = mg - 12/1 (半径の平方根に反比例) ⑤m/s² ⑩ 単位無し ここで、Cは物体の形状に依存する係数であり、 球の場合はおよそ 0.5 となる。 雨滴の形状が球だとして、終端速度は雨滴の半径の何 乗に比例するか。 適切なものを1つ選べ。 [34] ⑥⑥/12 (半径の平方根に比例 62 (半径の2乗に比例) ⑤ ma=kv² 10ma = mg + kv kv²=mg V = long fals い JAL = der²tu Img_ 11 4mg erin 4mg en F√ √

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0