学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(4.39)の計算が下の説明を読んでもわかりません どなたか教えてください

参照)は, っれるテク 4.3 LSZ 簡約公式 77 .8 do A(p)) = Jd°p]2 -2元6(p -Vp°+ m° 0)(2元)°8°(p- p) 順序とし Z 7(2x)2E。 を得る。ここで,p° = \p° + m' = Ep, <0|¢(0) |p; m°> = \Z/(2x)°2E, ieiw max(z.…, z) 点グリー くp;m°| 0+ ie ((3.29)参照)を用いた。 ここまで来れば,pおよび ω積分は(デルタ関数があるので)簡単に実行でき エn)]|0> る。積分を実行した後に,pf に関して質量殻上の極限(→m? すなわち →、pf + m°)を取ると, A(pi)に pf-m° の極が現れる。すなわち, 4.37) (2元)/Z eip-/+ m)max (x). ….) A(p)T(2x)2E, -/pi+m? + ie (エn)] = くp;m'| 完全系 パ→、所+ m? i/Z R- m' + ie 『pi 責の中で V(2x)°2E»× くp;m°| P1 皆段関数 (4.39) の寄与 以外の つも行 m?> = である。最後の行では, 分母分子に pf+\pf+ m? を掛けて変形した。ここで 興味があるのは質量殻上(pR= m?, pf > 0) での極なので, 最後の行では, f = m° の極以外の飛は Ep, =Vpi + m? におきかえた.また,分母の 2/p + m?e を改めてeとおきなおした.これは, sが正の微小量であればよ いので,正当化される。 上の結果から,次の2つの重要な帰結を得る。1つ目は期待されたように,質 ら次の因 量殻上では,運動量空間でのグリーン関数から自由粒子のファインマン伝播関数 として pf= m° の極 (p-m'+ie) !が現れることである。2つ目は, 質量殻 上では波動関数のくりこみ定数、Z が現れ,それは散乱行列(4.33) での1//Z と相殺するという事実である. これは,波動関数のくりこみ定数Zが物理的な量 ではなく,観測量からは消え去るべき量であることを示唆する。(この点に関す る詳しい議論は,17.3.3項を参照,) 4.38) 4.3.6 LSZ簡約公式に対するコメント 首を終える前に, LSZ 簡約公式についてコメントをいくつかしておこう. まず, LSZ 簡約公式を導出する際に, 場φ(z)の相互作用に関する情報は必要 なかったことに注意しておく. つまり,相互作用の情報は, T積のグリーン関数 G(m+n) てる1粒 Um, I1, …, In)の中に含まれている.また, LSZ簡約公式は本 p).1 を 質的にグリーン関数のみで書かれているので, 散乱に関する情報はすべてグリー

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理 微分方程式に関する問題です 各問について解答に間違いがないか、又、解答の一部分からないところについてお伺いしたいです (1)解答におかしなところはないか ⑵解答におかしなところはないか/下線を引いた運動方程式の解法について ⑶解答におかしなところはないか/aと中央のた... 続きを読む

【問題1】 野球ボールの運動 野球においてホームランのボールの軌跡を考える。野球ボールの質量をm, ボールをバッ トでコンタクトした瞬間の地面からの高さ, 初速度,地面に対する角度をん,, %, 6,とす る。バッターボックスからフェンスまでの距離L, フェンスの高さをHとしたときに, ホー ムランとなるために初期条件が満たすべき条件を0,-v平面上に示せ。 ヒント:ボールの軌跡を表す微分方程式を求め,6,を与えた時にホームランとな るために必要な。を求める。6,をいくつか変えて, %-G,平面上に図示する。んに よって異なる様子も検討してみるとよい。LやHは具体的な数値を入れてもよい。 【問題2】 ロケットの運動 無重力空間をまっすぐに飛ぶロケットを考える。このロケットの燃料を除く質量はM, 燃料の質量はm(t) とする。このロケットは燃料を単位時間あたり同じ質量だけ使用するも のとし,1=0での燃料の質量をm,,燃料の消費率をμ [kg/s]とする(いずれも時刻さには 無関係な正の定数)。このロケットに搭載されているエンジンは, 燃料の消費により推進力 Fを得ることができる。μが定数であるため, Fも時刻には無関係な正の定数となる。出 発点を基準にしたロケットの位置をx(t) で表す。このロケットが, 時刻t%3D0から燃料を使 用して無重力空間を飛ぶとき,x(t) の微分方程式を誘導せよ。 【問題3】 懸垂線(カテナリー) 距離aだけ離れた 2 つの支点によって支持された長さ距離Lのケーブルの懸垂線につい て考える。ケーブルの断面積をA, 密度をp, 張力をT(x), たわみをy(x) とし, たわみ角を 0(x) とする。このとき, y(x)を求めるための微分方程式を誘導せよ。 また, aと中央の最大 たわみの関係について考察せよ。

解決済み 回答数: 1