学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

至急!!わからないので教えていただきたいです!

平面から30°傾いた斜面X と, 45°傾いた斜面 Y が水平面の両側になめらかにつな がっている。水平面上のBC間には摩擦があるが, それ以外の水平面および斜面 X,Y は なめらかである。 BC間の距離は2hで, 小物体とBC間の水平面との間の動摩擦係数は 4 である。また、小物体の運動は同一鉛直面内で行われるものとし、 重力加速度の大き さをgとする。 下図のように、斜面X 上で水平面からの高さがんの点Aに質量mの小物体を置き, 静 かにはなしたところ, 小物体は斜面上をすべり下りて、 水平面上を点Bへ向かった。 斜面 X 斜面 Y A m h 小物体 1 2 - mg 2 30℃ 1ERSON √3 2 2h (1) 次の文章中の空欄 ア エに入れる式として最も適当なものを,下の①~⑨の うちからそれぞれ一つずつ選び, 番号で答えなさい。 但し, 同じ番号をくり返し選んで もよい。 小物体が斜面上をすべり下りているとき, 小物体にはたらく重力の斜面に沿った方 向の分力の大きさはア垂直抗力の大きさはイである。 このとき, 小物体が斜 面上を点Aから最下点まで移動する間に重力が小物体にする仕事はウ 垂直抗力 が小物体にする仕事はエである。 mgh √√3 2 B 水平面 mg mgh mg C ⑧ mgh 50 (3) 28.3 ④2mg ⑨2mgh 245゜ 8110 (2)点 B に達する直前の小物体の速さはいくらか。 最も適当なものを、次の①~④のうち から一つ選び、番号で答えなさい。 high ②√gh igh 0 4√2gh

回答募集中 回答数: 0