学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気双極子がつくる電場の導出過程において、 赤線部分の式変形が分かりません。 ご解説よろしくお願い致します。

9 電荷と静電場 電荷の大きさを4, 負の電荷から正の電荷にいたるベクトルをdとするとき, p=gd をその電気双極子の双極子モーメントという (図 9.26) 電気双極子がどのような電場をつ (9.43) くるかはpによっている。 一酸化炭素COや水H2Oなどの分子は電気的に中性だが,電子による負の電荷の分布の中 心と原子核による正の電荷の中心が少しずれている。このような分子は電気的には電気双 極子とみなすことができる. 電気双極子による電場を,まず電位を求め,それから式 (9.42)によって電場を計算す る,という方法で求めてみよう. 1 V(r)= 4760 (√r-d/2\_\r+d/21) 正負の電荷の中心を原点とし,正の電荷g はd/2に,負の電荷-gはd/2にあるとする. このとき, rにおける無限遠を基準点にする電位は,式 (9.37 ) により 191 図 9.26 電気双極子 1 \r-d/2 = (r²-d.r) + = 1/(1+d+r) となる。第2項はdの符号を変えればよいから, となる.ここで|d|は小さく, |d|<|r|であるとして, dについて1次までの近似でV(r) を 計算する. 式 (9.44) の( )内の第1項では, dについて2次以上の項を無視すれば, |r-d/2|=(r-d/2)・(r-d/2) r²-d.r したがって,式 (A.28) の近似を使って dr \r+d/2₁ ==—= (1-2;r) となる。これを式 (9.44) に代入し, (9.44)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

本日、学校の物理の授業にて、この問題が出されました。少しでも助かるので、教えて頂きたいです。物理が苦手科目の為、何から時進めていけばいいのか分かりません。

問題 I-1 火星から見た地球運動について考える。簡単のため、太陽、地球、火星の大きさや自転は 無視できるものとする。また、太陽を原点として xyz 座標をとり、太陽、地球、火星は1つ の平面(xy 平面)内にあるとする。地球と火星は太陽のまわりをそれぞれ速さ v。と Um で 等速円運動をしているとし、図のように時 刻=0 で地球は位置ベクトル re(Re, 0, 0)の 位置に、また火星は位置ベクトル Pm (Rm, 0, 0)の位置にあったとする。火星を原点とす る地球の位置べベクトルと速度ベクトルが 平行になったとき、火星から見た地球は見 かけ上止まっているように見えると考え られる。Rm /Re=1.524、vJvm=1.237 とした とき、火星から見た地球がこのように止ま って見える最初の時刻(およそ何日後か) を求めよ。ただし、地球の公転周期を365 日として計算せよ。 y4 U。 Um 太陽 地球 0 JR。 Rm 問題1-2 図のように,質量 m の物体が半径aの半円弧に沿って一定 の速さひで運動したとする.この運動の間に物体にはたらいた 平均の力(ベクトル量)を平均の定義にしたがって求めよ.求 めた平均の力にかかった時間をかけて求めたカ積が、運動量の 変化(ベクトル量)に等しいことを示せ。 a 問題I-3 図のように滑らかな滑車を介して2つの質量 mの物体と1つの質量 m2 の物体が吊り下 げられて釣り合っている。このとき斜めの糸と鉛直との間の 角度は0であったとして、以下の間に答えよ。 (1)質量 m2の物体の位置をxだけ下向きにずらしたとき、 3つの物体の位置エネルギーはどれだけ変化するか。た だし、滑車の大きさや糸の質量は無視できるとし、滑車 間の距離を 2a とする。 m」 m」 (2) Ar がaに対して非常に小さいとき、上で求めた位置エ ネルギーの変化量を、テイラー展開を使って近似する と、xの1次の項の係数はゼロになることを示せ。 (注意)Ax を変数としてテイラー展開するのではなく、Axla のような1より小さくなる 形に整理して、この1より小さい項全体を1つの変数と見なしてテイラー展開する。 m2

回答募集中 回答数: 0