学年

教科

質問の種類

物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

至急!!わからないので教えていただきたいです!

平面から30°傾いた斜面X と, 45°傾いた斜面 Y が水平面の両側になめらかにつな がっている。水平面上のBC間には摩擦があるが, それ以外の水平面および斜面 X,Y は なめらかである。 BC間の距離は2hで, 小物体とBC間の水平面との間の動摩擦係数は 4 である。また、小物体の運動は同一鉛直面内で行われるものとし、 重力加速度の大き さをgとする。 下図のように、斜面X 上で水平面からの高さがんの点Aに質量mの小物体を置き, 静 かにはなしたところ, 小物体は斜面上をすべり下りて、 水平面上を点Bへ向かった。 斜面 X 斜面 Y A m h 小物体 1 2 - mg 2 30℃ 1ERSON √3 2 2h (1) 次の文章中の空欄 ア エに入れる式として最も適当なものを,下の①~⑨の うちからそれぞれ一つずつ選び, 番号で答えなさい。 但し, 同じ番号をくり返し選んで もよい。 小物体が斜面上をすべり下りているとき, 小物体にはたらく重力の斜面に沿った方 向の分力の大きさはア垂直抗力の大きさはイである。 このとき, 小物体が斜 面上を点Aから最下点まで移動する間に重力が小物体にする仕事はウ 垂直抗力 が小物体にする仕事はエである。 mgh √√3 2 B 水平面 mg mgh mg C ⑧ mgh 50 (3) 28.3 ④2mg ⑨2mgh 245゜ 8110 (2)点 B に達する直前の小物体の速さはいくらか。 最も適当なものを、次の①~④のうち から一つ選び、番号で答えなさい。 high ②√gh igh 0 4√2gh

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校レベルの物理の問題です。 答えは出したのですが、解答と合わなかったので最後の問題の解き方を教えてください。

空気抵抗とは空気との接触により運動を妨げようとする力のことであり、運動している物体の速さ (速さの1乗) に比例する粘性抵抗と速 さの2乗に比例する圧力抵抗がある。 雨が圧力抵抗のみを受けながら鉛直下向きに落下する様子を考える。 圧力抵抗の比例定数を重 力加速度の大きさをg [m/s²]として以下の問に答えよ。 V 問31 鉛直下向きを正として雨の加速度をa [m/s'] としたとき、 速さ [m/s]で落下している雨滴の運動方程式はどのように記述され るか。 適切なものを1つ選べ [31] ① ma = mg + kv² (2) ma=-kv (3) ma = -kv² (6) ma=mg- ・kv (7) ma = mg-kv² ⑧ ma-mg 問32 比例定数kの単位はSI単位でどのように表されるか。 適切なものを1つ選べ。 [32] ① N·m ②N・s ③kg·m ⑥ N/m ⑦ N/s ⑧kg/m ①kmg mg k ② 月 33 雨滴は地表付近では等速度運動をする。 そのときの速度 (終端速度) Pt [m/s] として適切なものはどれか。 1つ選べ。 [33] mg -1 (半径に反比例) img k 5 1 (半径の1乗に比例) ④kg's ⑨kg/s 1km g 30 (半径に関わらず一定) 4 ⑧ 0 34 圧力抵抗の比例定数kはp を空気の密度、S を物体の断面積として、以下の関係がある。 x=2/cos CpS 4 ma = kv 9 ma = mg - 12/1 (半径の平方根に反比例) ⑤m/s² ⑩ 単位無し ここで、Cは物体の形状に依存する係数であり、 球の場合はおよそ 0.5 となる。 雨滴の形状が球だとして、終端速度は雨滴の半径の何 乗に比例するか。 適切なものを1つ選べ。 [34] ⑥⑥/12 (半径の平方根に比例 62 (半径の2乗に比例) ⑤ ma=kv² 10ma = mg + kv kv²=mg V = long fals い JAL = der²tu Img_ 11 4mg erin 4mg en F√ √

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0