学年

教科

質問の種類

物理 大学生・専門学校生・社会人

距離1mの2点では2π/λの位相差! ってところがわかりません... 教えていただきたいです!

ーx[rad]の位相差があるということ! だから, 図の式は も,t=T\s]での位相が2元に対応しているからなんですね。本全 写真y=y(x)から動く波を出すそ~! 実は“一点集中"の単振動の式もy=Asintでなくy=Asinotとしたの ここではもう1つのグラフ, "写真”y=y(x)からy(x, t)を導いておきま 先では一点注目(ギャル)の単振動y=y(t)から波の式を出しましたが、 @IMAGE おでな y A1 しょう。 まずt=0の波形を図のようにします。 先に一点集中から導いたのと同じ波形で A →X -A す。…つまり, 結果も同じになるはずです よ。 2元 これはy=y(x)の形です。 詳しく書くとy=ーAsinーxです。 え!? y=-Asinx じゃないかって~!?? 数学では横軸がx[rad]だったので sinx でOKなのですが, 今やっているのはyーxグラフ!…横軸は位直 x[m」です。図を見ると横軸方向の位置x=1 (波長)の場所は数字Cは 2元でしたね(この sin の中のを位相といいます)。つまりx=0, Aのと では2元の位相差がある!距離1[m] の2点では 2元 の位相差! 原点と 位置xの点では2元 -x [rad] の位相差があるということ! だから, 図の 2元 y=-Asinxとなるんです。 入 も, t=T\s]での位相が2元に対応しているからなんですね。 さあ,次はt秒後の波です。 y=y(x, t) を求めるのがターゲットですよ。 速さぃの 波はt秒後にvtだけ右に動いているハズで y す。 これ布

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

2の問題教えてください。至急お願いします!

以下の問題1から 3 に解答せよ. ただし, 特に指示がない限り, 電荷や導体などは真空中 に置かれているものとする. なお, 問題中にない定数や変数は自分で定義して (たとえば, 「ぽば ね定数をなとする」など) 用いてもよいが, 問題文中の定数や変数で解答できる場合ほその限 「 りではない. なお, 計算問題では, 計算結果だけでなく, どのような式を用いたか, とか』』 | のような積分の範胃をとるのか, などの簡単な説明を加えよ. 1. (8) 電荷 O が半径 。 の球の内部に均一に分布している, この電荷がつく る電界の強さ を, 球の中心からの距離7 の関数として求め,球の内と外について分けて答えよ. また, 球の中心からの距離ヶ を横軸にして, 電界の強さをグラフに表せ. (b) 電荷0が半径。 の球面上 (球殻という) に均一に分布している場合に, 電荷が作る 電界の強さを, 球殻の内と外に分けて答えよ. 2. 十分に厚く, 広い由体の表面の近く に正の点電荷が置かれている. 点電荷からの電気力 線と, 誘導される電荷の概略を図で示し, そのようになる理由を 50 文字程度で述べよ, なお, 理由は定性的でよい (定性的な説明 : 具体的な値についてまでは言及せず, 犬小 や方向, 向き程度で説明をすること. たとえば, 電界がいくらになると言わずに, 電界 がどこどこで強くなるなど) * 正の点電荷 導体 | 3.図のように細く無限に長い導線に電流 7 が流れている、 導線から, 離れた位置に巡の | 8 ロ ヒビ へ 編 @ を⑳) 153

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

これ教えてください!

1. 右の図 (人て(C) のように, 鉛直方向 の管に 動をする。物体の下方にバネ定数たのバ ネが置かれている。バネが自然長の場合 のバネの上端の位置を鉛直方向の座標 > の原点とする。高さんの位置から初速度 ャ=0 で物体を落下させる。物体がバネの ある> はバネと離れることなく運動する。管と 物体の間の摩擦や空気抵抗, およびバネ の質量は無視できるとし, 重力加速度を 9とす 1) (2) (3) 沿って質量 m の物体が上下に運 ミミ 0の所まで落ちてくると, 物体 (⑳) ⑧) (⑥ ⑩0 ミミんと, (⑪り z<0 のそれ ぞれの場合について, 物体の力学的エネルギーの式を書け。また, 力学的エネルギー 保存の法則を用いて, (ii) z=0 での物体の速さg, (iv) バネが一番短くなった時の座標 ヶをそれぞれ求めよ。 物体の位置 >が 0以上と 0未満のそれぞれの場合について, 運動方程式を書け。z<0 の場合に物体の運動は単振動になるが, その振動の中心を求めよ。[Hint : 振動の中心 は, 物体を静かにバネの上に置いてつり合わせた位置。] この物体が高さ >=んと (1) で求めたバネが一番和くなった点の間を往復運動する 場合について, 始めの 1往復 (1 周期) について物体の加速度 c), 速度 の, 位置 3(の0を求め, 横軸を時間,に取ったグラフで表せ。[Hint : バネの質量が無視できる場合 バネが自然長に戻ったところで物体がバネから離れ, 空中に放り上げられる。運動方 程式を書き下し, 解を正確に求めるのが望ましいが, 難しい場合はグラフの概形だけ でも良い。 ]

回答募集中 回答数: 0