学年

教科

質問の種類

物理 大学生・専門学校生・社会人

初めての質問です! 物理基礎なのですが、例題の回答のところで、ベクトルABの大きさをもとめる際の式がなぜ10×√2なのか教えて欲しいです。三平方の定理では無いのでしょうか。

15 B 10 図12のように,速度で走行しているバスAと,速度vg で走行し ているバスBを考える。 このとき, A に乗っている人が見るBの速度, すなわちAに対するBの相対速度 AB は、次のように求められる。 -> VAB = VB UB - VA (10) DAB=DB-DA VB B VB このように 考えてもよい Aに対するBの 相対速度 VAB VAB = UB-VA VB VA A ⓘ図 12 平面上の相対速度 例題1 相対速度 1秒後 UB VA A 雨が鉛直に降る中を,電車がまっすぐな線路上 を一定の速さ10m/sで水平に走っている。 雨 滴の落下の速さを10m/s とすると,電車内の 人が窓から見る雨滴の速さと, 雨滴の落下方向 と鉛直方向とがなす角の大きさを求めよ。 解 電車の速度をVA, 雨滴の速度を UB, 電車 内の人から見た雨滴の相対速度をVAB とす る。 UB これら3つのベクトルの関係は図のように なるので,雨滴の落下方向と鉛直方向がな す角の大きさは 45° VAB の大きさ=10×√2 = 10 × 1.41・・・ ≒ 14m/s (v2≒1.41 p.263) 20 類題 1 雨が鉛直に降る中を, 電車がまっすぐな線路上を一定の速さで水平に 走っている。 このとき, 電車内の人が見る雨滴の落下方向は、鉛直方向 と 60°の角をなしていた。 雨滴の落下の速さを10m/s とするとき, 電 車の速さを求めよ。 1956 [17m/s] VA -VA -O 10 10m/s 10m/s O VA 45° VAB

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学・ハイゼンベルクの交換相互作用についての問題です。 参考書を参考に(あ)〜(え)まで解いてみたのですが、考え方はあっていますか? また、(お)以降の解説をお願いします。ブロッホの定理やフーリエ変換はどのように効いてくるのでしょうか?

III. 以下の文章のあ き の枠内に当てはまる数式や記号を答えよ。 ヘ =1として,スピン角運動量1/2をもつ三つのスピンが,互いに相互作用している系を考え る。スピン演算子を$, S,, $, とすると,系のハミルトニアンは次のように与えられる。 自=-J(S, S+ S,. S。+ $。. S.), J>0. ここでも番目(;= 1,2,3) のスピンのz,9, z 方向成分をそれぞれ好,S, S とする。スピン演算 子の間には (S, SY] = iS}, [SF, SY] = 0などの交換関係が成り立つ、自) = E\d) を満たす。 固有エネルギーEとエネルギー固有状態|)を求めたい。 全スピン角運動量 Shot = $, + $2+S。を使うとハミルトニアンは次のように書き直すことが できる。 自= - + JC, 定数C= あ 'tot このことから基底状態のエネルギー固有値は 時の固有値は S= +1/2, -1/2 のニつであり,これらに相当する1スピン状態をそれぞれ↑。 ↓と記すと,3スピン状態は,|S{ S S3) = |M1),| t)などのように表すことができる。独 立な3スピン状態は全部で 具体的にエネルギー固有状態をあらわしてみよう。 まず基底状態のうちで Sto = St+ Sz + Sg が最大の状態は |S S; Sg) ちに書き下すことができる。 つぎにエネルギー固有状態のうちで Sie = 1/2 のものを求めたい,ハミルトニアンと交換可 能な演算子はハミルトニアンと同時固有状態をもつことを利用する.このような演算子の一つ にスピンをRIS; S; S) = |S; S; S;)のように巡回置換する演算子良がある。-iとなるこ とと,周期系におけるブロッホの定理やフーリエ変換を思い出すと,Rと St。と自の同時固有 状態は適切な定数A(複素数も含む)を用いて い である。 う 種類あり,規格直交基底をなす。にれらの線形結合の形で え のように直 三 る(「4)+A|)+ ^°| +t) V3 と表せることが分かる。Aの取り得る値をすべて列挙すると 底状態となるのは A- か 以上の結果からすでに二つ基底状態が得られた。残りの基底状態を列挙すると, お となる.このうちで,基 の場合である。 き と なる。

未解決 回答数: 1