学年

教科

質問の種類

物理 大学生・専門学校生・社会人

全く手が付かないです。教えていただけると幸いです。

1. (1) プランク定数丸,真空中の光速c,ニュートン定数Gだけを組み合わせて,エネルギー,質量。 長さ,時間の次元を持つ定数を構成せよ.なおこれらはそれぞれ,「プランクエネルギー」, 「プランク質量」,「プランク長さ」,「ブランク時間」と呼ばれ,宇宙誕生の際や量子重力理 論を考える上で重要な役割を果たすパラメータであると信じられている。 (2) 上で求めた4つの定数の値を SI標準単位で求めよ、有効数字2ヶタで答えること。 注:解答自体はネット検索等で簡単に見つけられると思いますので,考え方や計算過程をきち んと示すこと、答のみ書いたレポートは評価しません。] 2.2017年2月に, NASA が地球から約39光年離れた恒星系「トラピスト1」に地球に似た新しい7 個の系外惑星を発見したと発表し,大きな話題になった。地球からトラビスト1への簡単な宇宙 旅行のモデルを考えてみよう。 宇宙船が地球からトラピスト1まで光速の 80 %の速さで等速度運動すると仮定し!,以下の問 に解答せよ、ただし,話を単純化するため,地球とトラビスト1は相対速度ゼロの二つの慣性系 であるとする。 (1) 地球上の観測者から見ると,地球とトラピスト1は静止しており,運動しているのは宇宙船 である。この観点から,宇宙船がトラビスト1に到達するまでに要する地球上での時間と 宇宙船内での時間 (単位は yr (年))を求めよ。解答は有効数字2ケタとする。 (2) 宇宙船内の観測者から見ると,宇宙船は静止しており,運動しているのは地球とトラピスト 1である。この観点では,(1) で求めた宇宙船内での時間はどのように説明できるか? 【(2) のヒント] 宇宙船内の観測者が測る地球とトラピスト1の距離はどうなるだろうか? 3.重力は他の3つの力に比べて極端に弱いにも関わらず,天体の運行などの宇宙規模の現象に対して は支配的な役割を果たす。その理由を考察し簡潔に述べよ。 4. 湯川秀樹の中間子論によると,相互作用の到達距離はその相互作用を媒介する素粒子の換算コンプ トン波長程度と見積もられる。この考え方を弱い力に適用してみた場合,弱い力の到達距離は どの程度と見積もられるか考察せよ。ただし、弱い力を媒介するボース粒子(ウィークボソン Wキ,z°) の質量は,W*が約 82GeV, z° が約93GEVであることが実験によって判明している 弱い力の到達距離は授業中に紹介しているので,きちんと計算を書くこと、] 2 「つまり,宇宙船の発着に伴う加速·減速や方向転換の加速度などはすべて無視します。 2粒子の換算コンプトン波長の定義は、mをその質量として、入=ー 媒介する光子は質量なので、換算コンプトン波長は無限大となる。ごれは電磁力が長距離力(到達距離 = 無限大)である ことを表している。同じ理由で重力は長距離力であるので、(未発見だが)重力子も零質量であると考えられている。しかし ながら,強い力を媒介するグルーオンも零質量であることがわかっているが、授業で述べたように強い力は短距離力であっ て、原子核の大きさくらいしか力が届かない。これがどうしてかは難しい話なので、きちんと知りたい人は,量子力学を学 んだ後、大学院で QCDを勉強して下さい。 (自然単位系では、A=)例えば,電磁力を

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

下の問題をできるだけ教えてほしいです。雑ですみません。 ホントに何も分からなくて困ってます。お願いします。

【問 1】 点 (zz) における電場が,E = 』十2j で与えられている. この電場を図示せよ. ただし xy 平面上に限定して描く いう0 【問 2】 電荷の分布が以下のような場合, それによって生じる電場分布の形を, 文章と図を用いて答えよ. (1) 半径 。 の球面上に, 一様な電荷密度で分布する. (2) 無限に広い平面上に, 一様な電荷密度で分布する. (3) 無限に長い 半径 。 の円柱内に, 一様な電荷密度で分布する. 【問 3】 0 <ぁ<o を定数とする. 原点を中心とする半径 。 の球体内の, 半径り<ヶ<o の範囲に電荷が電荷密度 ヵ で一様に 分布している. この電荷によって生じる電場 E を求めたい. (1) 電荷の対称性を用いる範囲で, E の分布はどのようになるか, 文章と図で説明せよ. (2) ガウスの法則 pd4 = = な Eo における面 ⑤ (ガウス面) はどのようなものを選べばよいか. 簡単に理由をつけて答えよ. (3) ガウスの法則における電荷項 0j。はどのようになるか答えよ. (4) ガウスの法則を用いて, 原点からの距離 テ における電場の大きさ 万 を求めよ. 【問4】 た= 間 とおく (< 軸方向の基本単位ベクトル gk と混同しないように). 一様な電場 E」 = 2V2i が存在している空 間の原点に, 電荷 go三1 を固定した. G) 点5, *う における電場 EE を求めよ. (⑫) 点(0. 還 3 における電場の大きさ 万 を求めよ. (3) 束 (0. な) に。 電荷9ニー2 を置くとき。gに作用する力F と, その大きさ が を求めよ. 【問 5】 ガウスの法則を用いて, 電荷分布から電場を求める際に考えなければいけないことは何か. 重要と思われることを3点 答えよ-

解決済み 回答数: 1