学年

教科

質問の種類

数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします。

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人(AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k (1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人 (k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率 市は二項分 れ、 平均 \(np\), 分散\(np (1-p)\) です。 心極限定理からnが十分 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差(\(\sigma\)), 平均 (\(\mu\)) ●1シグマ範囲 \ (\mu\sigma \le X \le \mu + \sigma\) 確率68.3% ■2シグマ範囲 \(\mu - 2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率 99.7% • \(\mu -1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です 3 a a 9 これを使うと、真の得票率Rは95%の確率で \[ r - 1.96 \sqrt(\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)}{n}} \] に含まれると計算できます (詳しい計算は省略します)。 大きい時、 1 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人 (AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。 話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k(1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人(k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率分布は二項分布と呼ばれ、平均 \(np\), 分散 \ (np (1-p)\) です。 中心極限定理からnが十分に大きい時, 正規 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差 (\(\sigma\)) 平均 (\(\mu\)) 1シグマ範囲 \(\mu\sigma \le X \le \mu + \sigma\) 確率68.3% 2シグマ範囲 \ (\mu-2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率99.7% • \(\mu - 1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です J 3 a 8 これを使うと、真の得票率Rは95%の確率で \[r-1.96 \sqrt{\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)){n}} \] に含まれると計算できます (詳しい計算は省略します)。 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。わかる方お願いします

16:48 8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人(AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。 話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると以下のような確率モデルが書けます。 \[ P(X=k) = {_nC_k R^k(1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人 (k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3.Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率分布は二項分布と呼ばれ、平均 \(np\), 分散 \ (np (1-p)\) です。 中心極限定理からnが十分に大きい時、 正規 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差(\(\sigma\)), 平均 (\(\mu\)) ■1シグマ範囲 \(\mu\sigma \le X \le \mu + \sigma\) 確率68.3% ■2シグマ範囲 \(\mu-2\sigma \le X \le \mu + 2\sigma\) 確率95.4% ■3シグマ範囲 \(\mu-3\sigma \le X \le \mu + 3\sigma\) 確率99.7% • \(\mu - 1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です a 三 [24] 8・ 9 これを使うと、真の得票率Rは95%の確率で \[r-1.96 \sqrt(\frac{r(1-r)}{n}} \le R \ler + 1,96\sqrt{\frac{r(1-r)}{n}} \] に含まれると計算できます (詳しい計算は省略します)。 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

未解決 回答数: 0
数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0