学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数学IIIです。青チャート例題282 下の問題が全くわからないのでわかりやすく教えていただけないでしょうか?

459 重要 例題282 共通部分の体積 両側に無限に伸びた直円柱で, 切り口 が半径aの円になっているものが 2 つある。いま,これらの直円柱は中心 中心軸 π 軸が一の角をなすように交わってい 4 るとする。交わっている部分(共通部 8章 分)の体積を求めよ。 [類 日本女子大] 40 基本270,271 体 積 指針>重要例題 281 と同様に立体のようすはイメージしにくいので, 断面を考える。 立体の体積 断面積をつかむ ここでは,中心軸が作る平面からの距離がxである平面で切った断面を考える。直円柱は, その中心線と平行な平面で切ったとき, 断面は幅が一定の帯になる。したがって, 帯が重 なっている部分の断面積を考える。 解答 2つの中心軸が作る平面からの距離がxで ある平面で切った断面を考える。 の幅2/αーx° の帯が角-で交わっている /π )4 C 4 2- 1 から,その共通部分は1辺の長さが 2ー/2-2v/2V-x のひし形である。 切断面のひし形の面積は 2/21αーx·2/ー 「TI )4日 真横から見た図 Va? E42 (α-x) x よって,求める体積を Vとすると, 対称性から V=2),4/2 (αーズ)dx 3 16/2 3 練習 4点(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) を頂点とする三角錐を C, 4点 282 (0, 0, 0), (-1, 0, 0), (0, 1, 0), (0, 0, 1)を頂点とする三角錐をx軸の正の 方向にa (0<a<1) だけ平行移動したものをDとする。 「のとき CとDの共通部分の体積V(a) を求めよ。 また, V(a) が最大になると +C650 レ 。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

自由度10のx^2乗分布において、P(0<=X<=U)=0.98を満たすUの値を求めよ という問題があるのですが、答えを教えてほしいなどとおこがましいことは言わないのですが、何かヒントなどがありましたら教えてほしいです。

x?分布パーセント点 * 縦軸:自由度 横軸:確率 0.975 0.950 066°0 0000°0 0.0002 0.0201 0.995 0.050 0.025 0.010 0.005 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794 I 0.0100 0.0506 0.1026 5.9915 7.3778 9.2103 9969'0T 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8382 0.2070 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8603 0.4117 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5476 9 6689 I 2.1673 2.7326 0.9893 1.2390 14.0671 16.0128 18.4753 20.2777 1.3444 1.6465 2.1797 15.5073 17.5345 20.0902 21.9550 8 0999°IZ 23.5894 25.1882 1.7349 2.0879 2.7004 3.3251 16.9190 19.0228 6 3.2470 18.3070 20.4832 23.2093 2.1559 OL 2.6032 2.5582 3.9403 3.0535 3.8157 4.5748 19.6751 21.9200 24.7250 26.7568 12 3.0738 3.5706 4.4038 5.2260 21.0261 23.3367 26.2170 28.2995 13 3.5650 4.1069 5.0088 5.8919 22.3620 24.7356 27.6882 29.8195 14 4.0747 4.6604 5.6287 6.5706 23.6848 26.1189 29.1412 31.3193 6009 5.2293 5.8122 27.4884 30.5779 32.8013 6097L 24.9958 26.2962 15 6.2621 6666 IE 34.2672 35.7185 6.9077 7.9616 28.8454 5.1422 96 5.6972 27 6.2648 6.4078 7.5642 8.6718 27.5871 30.1910 33.4087 18 7.0149 8.2307 9.3905 28.8693 31.5264 34.8053 37.1565 30.1435 38.5823 606I'9E 10.1170 9906'8 10.8508 7.6327 32.8523 61 6.8440 7.4338 020 8.0337 8.2604 9.5908 31.4104 34.1696 37.5662 8966°68 21 8.8972 10.2829 11.5913 32.6706 35.4789 38.9322 41.4011 22 8.6427 9.5425 10.9823 12.3380 33.9244 36.7807 40.2894 42.7957 23 9.2604 10.1957 11.6886 13.0905 35.1725 38.0756 41.6384 44.1813 24 9.8862 10.8564 12.4012 13.8484 36.4150 39.3641 42.9798 45.5585 25 10.5197 11.5240 13.1197 14.6114 37.6525 40.6465 44.3141 46.9279 26 11.1602 12.1981 13.8439 15.3792 38.8851 41.9232 45.6417 48.2899 40.1133 43.1945 46.9629 49.6449 11.8076 27 12.4613 12.8785 14.5734 16.1514 28 13.5647 15.3079 16.9279 41.3371 44.4608 48.2782 50.9934 14.2565 16.0471 17.7084 42.5570 45.7223 49.5879 52.3356 69 13.1211 13.7867 00 20.7065 00 09 27.9907 09 35.5345 14.9535 16.7908 18.4927 43.7730 46.9792 50.8922 53.6720 22.1643 24.4330 26.5093 55.7585 59.3417 63.6907 66.7660 29.7067 32.3574 34.7643 67.5048 71.4202 76.1539 79.4900 37.4849 40.4817 43.1880 79.0819 83.2977 88.3794 91.9517

回答募集中 回答数: 0
1/3