数学 大学生・専門学校生・社会人 27日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 (3)の問題なのですが、もともとのQ市の人口を求める時に、『項目A÷項目B』になるのはなぜですか? 練習 4 下表は、 P~Wの8つの州から構成されている大国の自動車保 状況をまとめたものである。 項目 A 項目 B 人口1000人 項目 C 台数(台) 面積 1km² あたりの台数 あたりの台数 P 251.4 1.26 198.7 0108 21.1 0 336.2 3.21 104.6 0.11 38.6 R S 459.7 3 153.0 0.14 68.6 512.4 2.15 237.7 08 0 41.0 T 365.4 1.58 230.7 0,16 58.9 U 1025.4 2,55 401.3 0.06 64.1 V 211.7 2089 235.5 0.11 24.9 W 647.7 1.99 1,89 343.6 0.11 75.3 未解決 回答数: 1
数学 大学生・専門学校生・社会人 5ヶ月前 大学の課題です。 まったくわからないので解いてほしいです🙇♀️ よろしくお願いします🙇♀️ 例題:ある会社では、1つの製品を2つの工場 X、Yから3つの販売店 A、B、Cに輸送し ています。 各工場で製造される商品数は X が 28 トン/月、 Yが24トン/月です。一方、 販売店の需要量はAが16トン/月、Bが17トン/月、Cが19トン/月となっています。 また各工場から販売店までの製品1トン当たりの輸送費は、XからAが5万円、 B が7万 円、Cが3万円、 YからAが8万円、Bが6万円、 C が4万円、 それぞれかかります。 X から Aへの輸送量を x A、Bへの輸送量を xB、 Cへの輸送量を x C、YからAへの 輸送量yA、Bへの輸送量をyB、 Cへの輸送量をyCとしたとき、輸送費が最小になる最 適解を求めなさい。 ※必要な計算は各表の下の余白内で行ってください。 (1)最小費用法 (ハウザッカー法)で初期実行可能解を求めなさい A X 工場 Y LO 5 販売店 B 7 8 6 00 C 3 4 製造量(供給量) 28 24 16 17 19 需要量 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 5ヶ月前 練習15の解き方がわかりません。 答えは、負の相関があるです。 練習 下の表は, 10人の生徒に10点満点の2種類のテスト A, B を行った 15 得点の結果である。 Aの得点とBの得点の相関係数を求めよ。 また, これらの間にはどのような相関があると考えられるか。 生徒の番号 1 2 3 4 5 6 CO 7 8 9 10 10 Aの得点 8 10 6 4 9 7 8 Bの得点 4 5 6 7 LO 5 5 3 4 5 9 10 9 6 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 5ヶ月前 この問の(2)が分かりません。 なぜ赤線部分のような場合分けをするんですか? 31 αを実数とする。 xの2次関数f(x)=x+ax+1の区間 α-1≦x≦a+1に おける最小値を m(α) とする。 (1) (a) を a の値で場合分けして求めよ。 (2) a αが実数全体を動くとき, m (a) の最小値を求めよ。 (改岡山大)★★★ 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 11ヶ月前 この整数の答えわかる方いますでしょうか、、、 難しくて困難です。 空欄に当てはまる整数を答えよ. (以下の文 章で,a^n は a の n乗を表します) 7,7^2,7^3,7^4の1の位の数は, それぞれ順 に, 7,9,3,1 です. このことから, 7^2022 の1 の位の数は,( )である. 未解決 回答数: 1
数学 大学生・専門学校生・社会人 12ヶ月前 解いてるヤツあってますか? それとほかの問題、回答と解説して欲しいです 2x+1 ア 1. 関数 y のグラフはy==のグラフを軸方向にイ,y軸方向にウ平行 x-1 移動したものである. X (3)2 (イ) 1 (ウ)2 2. 関数 y = √-2+4-1のグラフはy=√-2のグラフを軸方向にエ にオ平行移動したものである. (1) 2 (4)-1 3. 次の関数の逆関数を求めよ. (1) y = x2 + 1 (x≦0) (2) y = log3x-2 2 x= -1 (ar) x=log2(-2) of-2: 3* of 3+2 y軸方向 J=-5x-1(421) 4. 次の関数 f(x), g(x) に対して, 合成関数 (gof)(x) (fog)(x), (fof) (x) を求めよ. 5. 次の極限を求めよ. (1) lim 3n 2 f(x)=221 g(x) = 2x+1 (2) lim 818 -2n3 + 5m² +7 n2-3n+5 -n+3 (3) lim √3n-2 (4) lim noo n²-3n - 7 818 ✓n n→∞n-2 (5) lim (Vn2+4-n) n→∞ 未解決 回答数: 1
数学 大学生・専門学校生・社会人 12ヶ月前 どなたかわかる方おられませんかね 秘密分散法(Shamir の (k,n) しきい値法)に関する下記の問題を解いて回答を提出しなさい。 素数p = 31のとき、秘密情報s(0≤s <p)を以下の多項式f(x)を用いて分散するものとする。 f(x) = s + ax + bx2 + cx3(modp) ここで、a,b,cは乱数 (0≤a,b,c <p)である。 xの各値(0 < x < p)に対応する分散情報y=f(x)の値を下の表に示す。 x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 y 10 26 27 19 8 0 1 17 23 25 29 20 10 35 20 30 x 16 17 18 19 20 21 y 10 28 28 16 29 11 230 22 23 24 30 17 28 22 25 26 27 28 29 30 7 22 17 29 22 2 (1) 異なるxの値を4つ選び、秘密情報sの値を求めなさい (乱数a,b,c の値を求める必要は ない)。 ただし、xの値は、各自の学籍番号 (最後のチェックディジット1桁は除く)の 下3桁をmとするとき、 x1 = (mmod30) + 1 (つまり、mを30で割った余りに1を加え る)、 x2 = (m+7mod30) + 1, x3 = (m + 11 mod30) +1、 x4 = (m + 17mod30) +1と 選びなさい。 (2) 上記(1)とは異なるxの組み合わせについて、 同様に秘密情報s の値を求め、 (1)の結果と 等しくなることを確認しなさい。 (1),(2)共に導出方法の説明や途中の式を適宜示すこと(答えだけ書いてあるものは不可)。 回答は、pdf 形式にてアップロードしなさい。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 12ヶ月前 この問題を詳しく解説お願いします。 (4) 右の図のような, AB=2cm, BC =7cm,BE =8cmで ∠ABC=90°の三角柱 ABCDEFがあります。 点Pは辺EF上 028 00 の点です。 EP=2cmのとき, 三角錐ACDPの体積を求めな A 20 B さい。(4点) es 028 2×7×1/2=7 01 =) 7×8=56 56×3 A 2 18.6 E2cm 356 90° 26 24 20 H 未解決 回答数: 1
数学 大学生・専門学校生・社会人 約1年前 3.5.6.7.8がわかりません できれば途中計算もお願いします 3 次の関数 fの微分f' を求めよ. (1) f(x)=2x + 3x3 + 4x² - 5 (3) f(x)== x²+3x-2 (5) f(x)=tan 3x (7) f(x)= log(x + √√x²+4) (2) f(x)=(x2+3x) (x² - 2) (4) f(x)=(x²+3x-5)² (6) f(x)= cos³ x (8) f(x) xe2 :=xe 2x 未解決 回答数: 1