学年

教科

質問の種類

数学 大学生・専門学校生・社会人

どうしてnを無限大にしたときに0になることを証明しているんですか?

f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ある遺跡から動物の骨と思われる化石が見つかった。この化石の元素分析をした結果、炭素12と炭素 14の割合が(化石の炭素14の量)/(化石の炭素12の量)=8.5/(10^13)であることがわかった。この動物は何年に死んだものかを次の資料を参考に求めよ。 写真参照 こち... 続きを読む

11 ある遺跡から動物の骨と思われる化石が見つかった. この化石の元素分析をした結果,炭素12 と炭素 (化石の炭素14の量) 8.5 であることが分かった. この動物は何年に死んだものかを次 1013 14 の割合が ( 化石の炭素12の量) の資料を参考に求めよ. 資料 地球上の大気や物質中には、 通常の炭素原子 「炭素 12」 とは異なる 「炭素14」とよばれる炭素原子が存在 する. 炭素 14 は, 大気圏上層において宇宙線の作用により窒素から生成される.ところが,炭素14 は不安定 な放射性原子であり, ベータ線を放出して崩壊し、再び窒素にもどる. この様に, 大気中では,生成と崩壊の バランスがとれており、 自然界におけるこれら2種類の炭素原子の量の比は一定である. この量の比は, 大昔 (炭素14の量) 1.2 も今も変わらないと考えられ,現在の測定値は である. ところで、 炭素 14の崩壊は, = (炭素12の量) 1012 5730年で半分となる割合で起こり、この5730年を炭素14の半減期とよぶ. 大気中の炭素は二酸化炭素の 形で存在し, 植物による光合成や、 その植物を食べる動物の食物連鎖によって, 動植物の体内に取り込まれて (炭素14の量) であると考えられる. ここで, 動植物が死滅 いく. つまり、動植物の体内においても, 1.2 (炭素12の量) 1012 すると, 生体内に取り込まれていた炭素14は崩壊して減っていくが、 食物連鎖の対象外となったため、 新た に炭素14が供給されることはない.

解決済み 回答数: 1
1/66