学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の(1)の回答の意味はわかるのですが、(2)の回答がどうしてそうなるのかが分かりません。 どなたか説明して下さらないでしょうか

231 8 OOOO π p.227 基本事項2 求めよ。 基本事項I) 熱車 計> (0S<T, 0キ π y=mx+n m=tan0 目して、この 2 n x n 40 m 0 のなす鋭角0は, a<Bなら B-a または ァー L図から判断。 元ー(B-a) 4章 x 備 O0 24 で表される。 この問題では, tana, tan 8 の値から具体的な角が得られないので, tan(8-a)の計算に マ8 0200 加 加法定理 を利用する。 角の公式 法 0nied 0nieonie-0200 定 る象限に注 「解 答 2直線の方程式を変形すると 3x+1, ソ=-3/3x+1- cosaであるか 単に2直線のなす角を求める だけであれば,p.227 基本事 項2の公式利用が早い。 y=-3/3x+1\ 1 2 in) 図のように,2直線とx軸の正の向 きとのなす角を,それぞれ α, Bと すると,求める鋭角0は 0=β-e 13 ie 0 傾きが mi, m2の2直線のな す鋭角を0とすると B mi-m2 tan 0= 0 1+m,m2 定 3 0 ソ= -x+1 tan 8=-3/3 で, 2 fies=8 2tan 別解 20) 2直線は垂直でないから tan α= 2 tan β-tanα tan 0 tan 0= tan(B-a)= 1+ tan Atan a e0020 3 -i(13/3) 5 -3/5-)=+(-3,5)-号- 2 の値を /3 3 1+ 2 三 α-B) 2倍角の公 =12 2 (ダール 「もよい。 rtcos 2c ana coa 0<e<号から 0=号 0=2 3 200+ 7 <O<分であるから 2 2 12直線 y=2x-1 とx軸の正の向き 2 とのなす角をαとすると tanα=2 y=D2x /y=2x-1 42直線のなす角は, それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線 y=2x-1を平行 移動した直線 y==2x をも tanα±tan 4 4 tan a土 π 0 4 1千tanatan お 1n(2土 n20co Tπ -1 2土 (複号同順) とにした図をかくと、見通 1千2·1 1 sin しがよくなる。 『あるから,求める直線の傾きは 3sina 3 昼本直線のなす角 直線y=mx+n とx軸の正の向きとのなす角を0とと 直線y=2x-1と角をなすのを求めよ。 2直線V3x-2y+20, 3/3 x+y-1=0 のなす鋭角0を。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

三角関数の合成のやり方をわかりやすく教えてください

D川早月の公式/三角関数の 229 い)in 例題 100 2倍角の三角関数の値 αが第2象限の角で sinα= 大の関三 -1のとき,sin2a, cos 2α の値を求めト A aが第2象限の角で, sina= 解 αが第2象限の角のとき cos α<0 だから 号のとき、sin2a. cos 2a. tan 2a の値を 「31 an - 2倍角の公式 244 cos a=-V1-sin'α=- 2/2 求めよ。 3 sin 2a=2sinaco cos 2a=cos'aーsia) 3 よって sin2α=2sinαcos α=2 -(-2) 4/2 aが第3象限の角で, tanα=3 のとき, sin2a, cos2a, tan 2a の値を =2cos' a-1 =1-2sin'a 245 9 求めよ。 cos 2a=1-2sin’α=1-2. 半角の公式を用いて, 次の値を求めよ。 (2)* cos 15° tan 2a= 2tana 1-tan'a 例題 101 246 (1)* sin15° (3) tan 22.5° 半角の三角関数の値 今くaくπ で,cos α=- 3 のとき, cos. tan の値を求めよ。 241 5 今くaく元, cos a= --言のとき、 sin. cos, tan の値を求めよ。 247* 230 解 2 cos'- 3 1- 5 1+cos α 2 半角の公式 1 2 次の式を rsin(0+α) の形に変形せよ。 ただし, r>0, 一元<α<π と 2 5 248° sin- cos" tan'- 1-cosa 2 (2) (2sin0+、2 cos0 (4) -、6sin0+(2cosθ くaくより く< よって cos>0 ゆえに coo-- e する。 (1)(3 sin0- cosé (3) -sin0-、3cos 0 4 1+cosa 2 2 2 _1-cosa 1+cosa 1 2 COS 2 V5 5 249* 次の等式を証明せよ。 1+sin2α-cos 2α =tan a 3 1-cos α tan?ラ=1+cos a 1+sin2α+cos 2α 5 =4 3 1- 5 2 (1) sin2α=(1+cos 2α)tana 子く号く号だから tan >0 tan=2 ● B よって sin0-cos0= |3 。のとき、 sin20. cos20, tan20 の値を求めよ。 102 三角関数の合成 頭248 250 in0+/3cos 0 を rsin(0+α) の形に変形せよ。三角関数の合成 ただし、そく0<とする。 4 ,r>0, 一Tくα<π とする。 asin0+bcos 0 =/+が'sin(0+a) のとき,tan0, sin20 の値を求めよ。 3 10 つ図より ア=/(-1)+ (/3)32 tan0+ tan 0 Ay Ay 251 P(-1, V3) /3 b 「a?- Q= 3% 188 次の等式を証明せよ。 (3倍角の公式) (1) sin3α=3sinα-4sin'α 0 252 (2) cos 3α=4cos°α-3cosa - -sin0+/3cos0 b COs α= +が -2sin(0+) 3章 三角関数 71 asin0+bcos0 は合成して → Va'+b'sin(0+e)

未解決 回答数: 1