学年

教科

質問の種類

数学 大学生・専門学校生・社会人

2つの平面曲線A,Bの曲率が同じであれば、BはAを適当に回転&並進することで得られる、という命題の証明なんですけど、式2-37がどのような理屈で出てきたのかが分かりません。 分かっている事は以下の通りです。 ・曲線が全てのパラメータで一致するには、そのパラメータにおける曲... 続きを読む

$2. 平面曲線 9 さて,逆に2つの曲線 p(s) と 戸(s) の曲率 r(s) と r(s) が等しいなら ば,戸はpから回転と平行移動によって得られることを証明しよう。その ために,まず,適当な回転と平行移動で,1つのパラメーター値 so におい て, (2.33) p(so) = p(so), e₁(So) = ē1(So) (したがって, ez(so)=e2(so)) となるようにする. 曲線pと戸を点の運動 と考えたとき,出発時 so において, p と 戸の位置および速度ベクトルが一 致するようにしておくわけである. このような状態のとき p(s)=(s) が すべてのsに対して成り立つことを示せばよいわけである。 まずベクトル el, ez, el, ez の成分をそれぞれ e₁ = (§11, §12), e2 = (§21, 22), (2.34) ē₁ = (§11, 12), ē2 = (§21, 22) と表して、2つの行列 11 12 §11 12 (2.35) X = X = €21 21 22 を考える.eとeは直交している単位ベクトルであるから, Xは直交行 列,同様にXも直交行列である. p (so) = (so) であるから p(s) = n(s) を証明するためには, p(s) - 戸(s) がsによらない定ベクトルであること, すなわち (2.36) d - (p(s) — p(s)) = 0 ds を示せばよいわけである。 (2.36) の左辺は er(s) er(s) であるから ku(s) = n(s) 512(s)=E12(s) を証明すればよいのであるが,そのため に (2.37) (§11 — §11)² + (§21 - 21)² = 0, (§12 — §12)² + (§22 — § 22)² = 0 となることを証明する。ここで (Sun)+ (512-12)2 を考えないで (2,37) を考えるところが証明の要点といえる。

未解決 回答数: 1