学年

教科

質問の種類

数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

黄色い蛍光色の部分に関して 1.なぜこのように言い換えができるのか 2.なぜこの確率が1/kなのか 以上のことがよくわかっていません。 わかる方お願いします🤲

る. 【基礎0.10.6】 (1993AIME 問8 ) Sは6個の元からなる集合とする. Sのふたつの部 分集合 A, B を選びS = AUB とする方法は何通り あるか ただし AnB≠中でもよく、 またAとB を交換しただけのものは同一の方法とみなす.例え ば A={a,c},B={b,c,d,e,f} と A = {b,c,d,e, f}, B = {a, c} は同じとみなす. 解答n=#S=6とする. S=AUB のとき、各 s∈Sは, s∈A-B,s∈B-A, a∈ANB の3通 りの可能性がある. だから (A,B) と (B, A) を区別 して数えるとき, A, B の選び方は3通りある. ま たA=BとなるのはA=B=Sの場合に限る. し たがって (A,B) = (B, A) とみなす場合, その場合 3-1 の数は, +1=365 通りとなり、これが求め 2 る答である. 第 0.10.2 項 確率と期待値 起り得るすべての場合を分母として,問題になっ ている事柄が起きる場合の比をその確率という. 例えば、ある事柄が起こった場合賞金 a(z) 円 がもらえる場合が起きる確率をP(x) として, す 48 の必要十分条件は、 1回目のくじで (k-1) 位以上 だった (k-1) 人のいずれよりも2回目のくじで上 位になること, いいかえると, 1回目のくじで位 以内のk人の中で2回目のくじが1位であることで であるので 求める期待値は ある。 この確率は N k=1 である. 有限集合 【基礎0.10.8】 (1994JMO 本選問5) Nを正の整数とする. 1 から Nまでの数字を一つず つ書いたくじがあり, N人でこのくじを引けば1位 からN位までの順位をつけることができる. N人 でこのくじ引きを2回行い、 次のようにして景品を 与える人を決めることにする. 「ある人Aに対して、 1回目と2回目の順位の双 方がともにAより上位である人Bがいる場合には Aには景品を与えない. そのようなBがいない場 合に限りAに景品を与える. 例えば、 1回目で1位 を引いた人は2回目が何位であっても景品をもら える」 このとき、景品をもらえる人数の期待値を求めよ. ただしくじはあらかじめよくかきまぜてあり、2回 目のくじ引きの前にもう一度よくかきまぜるものと する. また「景品をもらえる人数の期待値」とは, そ れぞれの場合が起こる確率とその場合に景品をもら える人数を掛けた値を、全部の場合について足し合 わせたものである. 解答 1回目のくじでk位の人が景品をもらうため とする. もしbi がnで割り切れるなら, { (1,02.... } が求める部分集合である. そこで、どのbiもn で割り切れないとする。これらをnで割ったときの 余りは 1,2,... n-1 のどれかであるから、 鳩の巣原 理によりnで割ったあまりが等しい2数が存在す る. それらをbi, bj (i < j) とする. すると It n bj-bi = Qi+1 + ai+2 + ... + aj で割り切れるから, {ai+1, Oi+2..... aj} が求め

解決済み 回答数: 1
1/3