学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数列 {a[n]} は任意の番号 i, j に対して | a[i+j] - a[i] - a[j] | < 1/(i+j) が成り立つものとする {a[n]} は等差数列であることを示せ この問題をご教授頂けると幸いです。すみませんが。 この問題の解説の 2... 続きを読む

問題 数列 (an)は任意の番号,jに対して la(i+j)-a(i)-a(i)|< 1/(i+j) が成り立つものとする。 (an) は等 差数列であることを示せ。 1.先ず初めに (an) が等差数列とすると、ある実数 a,bが存在し a(n) = an + bと書けるが、 この時 |a(i+j) -a(i) - a(i)|= |b| である。従って6チ0ならば、(Archimedes の原理により) N> 1/b|となる自然数Nを取れば、 0<1/N < |bとなる。 この時、la(N+1)-a(N) - a(1)| < 1/(N+1) とならなければいけないが、一方でla(N+1) - a(N) - a(1)| = || > 1/N > 1/(N+1) となり矛盾 である。従ってb=0でないといけない。 この時 a(1) = aである。従って a(n) =D n.a(1)でなければ ならない。 解答 2. そこで、a(n) =n.a(1) であることを示す。今ある自然数 m(> 2) が、a(m) + m.a(1) となると仮定 して、矛盾を示す。a(m) - m.a(1) = dとおく。dチ0である。 (Archimedes の原理により) M> 2m/|d となる自然数 M が取れる。 0<1/M <\d/2m となる。 こ の時、 m |m-a(1) + a(M)- a(M +m)|= {a(1) + a(M +k-1)-a(M+k)} 1k=1 m k=1 m Tm <と1(M + k)<2VM = m/M < \d/2 k=1 k=1 が成り立つ。又、 も成り立つ。従って m-a(1) - a(m)| =|{m.a(1) + a(M)- a(m+ M)}-{a(m) +a(M) - a(M +m)}| <d/2+ Id/2 = |d であるが、一方 |m. a(1) - a(m)| = \d であったから、矛盾である。 ロ

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問4 積分の仕方がわかりません。お願いします。

| しる ル科還つゆまでに柏本Him * ee EN Ne 90 0) の縛昌年敵に利用し。 ポール利見つけ称まで eee 記] mw Yopprがか 了ナxt) m ekp-2le 一 6 本 に でちえられている、このと度、以下の咽いに得天よ、(ao 点) 14) PrtT mw 5) 香求めぬよ. (8 地) 人S) CDE を求めよ. (7 貞) SG) Prt0マエマ3アーュ/和4 < 2) の価 (相知素入して渋到点AF 3 力5 馬抹めと. (AO 占) G) さ のモーメント叶関数を求めよ、 (no 点) 本呈族 F、Y。 に対する分散と 共分骨をそれぞれ g寺 m ParLrloを = Varioを = VarlZ1。 xy = OoplX、Y1Joxg m outc、ZLoy=ー Coa という明呈で表す。このとき. 以下の問いに答えよ. (20 台) Ip の共分覆 Coolr+エアー タク| を上記の中の必要な記号を用いて表芋- GSG 京) 料) Wo gxy ーーcxa ならばエメュアとァ- Z の相則係王ま 1 になという. このと生、マY 本 間どらになゃか. t10 恵) | 環李数 (YY) の回時確率密度数 な(ry) が / it Fexpl-(ェの)) (0て2z< す SS) fh 雪セゴキ上 1 {その他) 系上よ. (25 点) なお、 以降の問題はいて で求めた値を像星すること. (5各、 全。 (1 以下の間いに て小数点以下き格) を来めょ。Qo 品1 引埋 W 区 則 IE| ま 9DIM」到び Wi の確串分肌の鐘 到 熊筐Sh 1は26 か 人hlにIL 2021/01/07

回答募集中 回答数: 0