数学 大学生・専門学校生・社会人 4年弱前 教えてください 17:17 イ ああ forms.office.com または * 指数は“を使って表記(10→10°5) (シグマ(=1,n-a) く例> * えなどの記号にバーが入る場合は、x(パー)と表記 (2+3+4+4+5) × 105 8×3 xV210 ×3 *小文字のシグマはσで表記。使用しているデバイスの 関係ですが表記できない場合は、シグマ(小)と表記 →(((243+4+d454)a10^5)/(Ra?))「(2^10x?) 3 【問題1】肺癌による入院患者のカルテか ら既婚女性の症例を選び出し、本人および 夫の喫煙状況を調べたところ、患者本人は 全く喫煙しない者100人の内、夫が常習喫煙 者である者が60人、夫も非喫煙者が40人で あった。対照群として、癌でない婦人科疾 患の入院患者から、肺癌患者群と年齢構成 が同じになるようにして非喫煙の既婚者100 人を抽出したところ、その夫が喫煙者であ ったのは40人、非喫煙者は60人であった。 この調査結果を用いて、肺癌発症のリスク を検討する。 (1)この調査の手法は疫学の何研究か。 (2)夫の喫煙による妻の受動喫煙と肺癌発症 との関連の強さを示す指標を求め、その意 味を考えよ。 (3)両群の女性に食習慣の調査を行ったとこ ろ、緑黄色野菜を毎日一定量以上食べる者 は、患者群で50人、対照群では60人であっ た。緑黄色野菜充分摂取と肺癌発症との関 連の強さを示す指標を求め、その意味を考 えよ。 回答を入力してください 日 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 4年弱前 (2)の直線の式を答える問題なのですが、上の解答の±について、()の中の符号は-でなければいけないのでしょうか? 最後の式の導き方がなかなか飲み込めなくて... さらに別の書き方、答え方があれば教えていただきたいです。 V7 PRACTICE …97® 円(x-5)°+y°=1 と 円 x*+y=4 について (1) 2つの円に共通な接線は全部で何本あるか。 (2) 2つの円に共通な接線の方程式をすべて求めよ。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 数1チャートの一時不等式からの質問です。 写真の黄色で囲った部分が問題と解答で 質問は赤線部分です。 (3)a-2<0のとき 両辺を負の数a-2で割るなら (a-2)x>-3(a-2)が元の式なので -x<+3 =x>-3になるのではないでしょうか? 初歩的... 続きを読む 3 不等式 0x>-2 はすべての実数xに対して成り立一 7 [2] a=0 のとき よって,解はすべての実数。 2 r<Iん [3] a<0 のとき 2) ax-6>2x-3a から ax-2x>-3a+6 (a-2)x>-3(a-2) [] a-2>0 すなわち a>2 のとき 両辺を正の数a-2 で割って [2] α-2=0 すなわち a=2 のとき 不等式 0.x>-3·0 には解はない。 [3] a-2<0 すなわち a<2 のとき 両辺を負の数aー2で割って 3個 みと よって x>-3 くら xく-3 a>2 のとき x>-3 a=2 のとき 解はない とき []~[3] から a<2 のとき x<-3 PRACTICE…30®aを定数とする。次の不等式を解け (1) ax-1>0 (2) x-2>2 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 行列式の定理の途中で出てきてよく分からなかったところです。 1と2どちらが正しいですか?どちらも違いますか? n しi <例> 3次正行引のとえ Qalesuて参る。 loss 0-00 Qu Qa Qz3 As| Oor Cez 0Q Q31 Qza Az3 0 4p 0 Qe Qez@2= Ae 0 -1 + Cea + U3z 1 0 f 0 Q34 ) Q--二 hiala: 5 Qial 1 022 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 全体をアルファとしておいてから解いたのですがよくわかりません。 どなたかよろしくお願いします sin Csince) fれた れ+んた) mo得数 nid 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 確率の問題です。 3以降が分かりませんでした。 一問でも教えていただけると幸いです。 答えはありません。 よろしくお願いします! (0<z<3) lo(その他) -2g ce Xは連続確率変数で, Xの確率密度関数は fx (x) = である。 また Y はXと独立だがX と同じ確率分布を持つ確率変数とする。 max(X,Y) =(X(X2Y) (y (X<Y) と定める。 以下をすべて求めよ。 1.定数c 3. E(X) グラ 4. P((X< 2) n(Y< 2)) 5. P((X < 2) U(Y< 2)) 6. fmax(X,Y)(z) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 確率の問題です。 どの分布を使うのかもわからないです。 答えがないので合っているのかすらわからないという状況です。 よろしくおねがいします! III. 以下をすべて求めよ。 サイコロを何回も投げるとき, i回目に出た目をX, とし, Y, %=D 1(X,23) とする。 0(X;S2) また Sn = Xi +X2+ +Xn, Un =D Yi + Y2++Y, とする。 さらに W は連続確率変数で, W の確率密度関数は fw(z) = ce- (-0くz<o) とする。 1. E(Sn) の0 2. V(S,) 3. E(U) 4. V(U。) 5. P(Un = k) 6. 定数c 8. P(S, =n+2) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 (6)と(8)と(12)の解き方が分からないので教えていただきたいです。よろしくお願いします。 2c ' (2)ce 1 (4) Arctan 2 ク (6) Arccos V1 1 22 (0<2< 1) 2 -1 (8) Arcsin (z > 0) 22+1 (10) log (x + Vz? +1) COS C (12) (cos.a)° COS T 1 1+2 (14) - log 2 1-2 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約4年前 留学先の統計学の問題です。 4、5、2問あります。 後、数時間で提出となり、焦っております。 どなたかお力添えをお願いします😭😭😭 時差があり、深夜回答はたいへんありがたいです。 朝までにお願いします。 4. The temperature of the Earth at different sites can be measured in two ways. One, by taking readings using thermometers on the ground (x), which is extremely tedious and time consuming. Second, bylasers positioned on satellites revolving about the Earth (v). which ie a less accurate method and may be biased. The readings for both are given below: Ground Therm., x Satellite Laser, y Site 1 4.6 4.7 2 17.3 19.5 3 12.2 12.5 4 3.6 4.2 5 6.2 6.0 6 14.8 15.4 7 11.4 14.9 8 14.9 17.8 emignaia 9 9.3 9.7 10 10.4 10.5 11 7.2 7.4 You would like to test the claim that the Laser method gives a significantly higher reading than the ground therm. method. You may assume that the difference between pairs of scores is approximately normal. A) Would testing for a difference in means or a paired difference test be better to use here? Why? B) Perform the test you concluded in part A). 200 seetV C) Would you have any reservations about yourinference? Why? 回答募集中 回答数: 0