学年

教科

質問の種類

数学 大学生・専門学校生・社会人

一次関数応用です! 第4問の4がわかりません!解説お願いします🙇

2 d 1日)たかしさんとけんとさんは、学校から公園まで一直線の道をランニングすることにしまし 第 に。午前9時にたかしさんが先に学校を出発し、 その6分後にけんとさんも学校を出発しました。 たかしさんは,途中までは一定の速さでランニングし続けていましたが, ある地点からはランニング の,それまでの半分の速さで公園まで歩き続けました。けんとさんは, ランニングの途中に1回だ リトち止まって休憩し, 再び、休憩する前と同じ速さで公園までランニングし続けました。午前9時45 分に2人は同時に公園に到着しました。 14 トの図は,たかしさんが学校を出発してからx分後の, 2人の間の距離をymとして, xとyの関係 をグラフに表したものです。 あとの1~4の問いに答えなさい。 y (m) 096 98 23 13 20 23 45 x (分) 0 9 98 けんとさんは, 学校を出発してから公園に到着するまでに, 何分間ランニングをしていましたか。 学校から公園までの距離は何mですか。 3 けんとさんが休憩しているときのyをxの式で表しなさい。 2人の間の距離が1000mとなるときが全部で2回あります。2回目は1回目から何分後ですか。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャートの問題なのですが❔のところがわかんないです。なぜ2θ+α=90°のときとわかったのでしょうか?他の問題のように単位円で範囲を絞ってこうと思ってもよくわからなかったです、、

重要例題162 図形への応用 (2) 点Pは円×+y?=4上の第1象限を動く点であり,点Qは円×+y°=16上の第 使眼を動く点である。ただし, 原点0に対して,常に ZPOQ=90° であるとす また、点Pから×軸に垂線 PHを下ろし, 点Qから×軸に垂線QK を下ろ *更に ZPOH=0とする。このとき,△QKH の面積Sは tan0= のと き,最大値コをとる。 [類早稲田大) 重要159 針> AQKH の面積を求めるには,辺 KH, QK の長さがわかればよい。そのためには, 点P と点Qの座標を式に表すことがポイント。 半径rの円x+y=r上の点 A(x, y) は, x=rcos a, y=rsinα (αは動径 OA の表 す角)とおけることと, ZPOQ=90° より, ZQOH=ZPOH+90° であることに着目。 解答 OP=2, ZPOH=0であるから, Pの座標は (2cos 6, 2sin0) 0Q=4, ZQOH=0+90° であるから,Qの座標は (4cos(6+90°), 4sin(0+90°)) 04 2 P すなわち(-4sin0, 4cosθ) ただし 0°<0<90° ゆえに S--KH-QK= -4 K 0 OH2 * (2cos0+4sin0).4cos@ 2 =2(2cos°0+4sin@cos0) =2(1+cos 20+2sin20)=2{/5sin(20+α)+1} 三角関数の合成。 ただし, αは sinα= 5 2 COS Q= 0°<α<90°を満たす角。<aは具体的な角として表す V5 (0°<) α<20+α<180°+α (<270°) よって, Sは20+α=90° のとき最大値(2(V5 +1)をとる。 ことはできない。 0°<0<90° から 1 20+α=90° のとき tan20=tan(90°-α)= COS Q =2 sina sina= V5 2 COS Q= 75 tan a 2tan0 =2 1-tan?0 ゆえに よって tan?0+tan0ー1=0 (tan0 についての2次方程 式とみて解く。 アー1+ 5 2 0°<0<90° より tan0>0であるから tan 0= 練習 0を原点とする座標平面上に点A(-3, 0) をとり, 0°<θ<120° の範囲にある0 102 に対して, 次の条件(a), (b) を満たす2点B, Cを考える。 (a) Bはy>0の部分にあり, OB=2かつ ZAOB=180°-0である。 (b) Cはy<0 の部分にあり, OC=1 かつ ZBOC=120° である。 ただし、 △ABC は0を含むものとする。 △0AB と △OACの面積が等しいとき, θの値を求めよ。 2) 0を0°<0<120° の範囲で動かすとき, △OABと △OACの面積の和の最大 値と,そのときの sin@の値を求めよ。 [東京大)

解決済み 回答数: 1