学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

4袋る白こりし [3] ∠ACB=90° である直角三角形 ABC と, その辺上を移動する3点 P, Q, R がある。 点 P, Q, R は、 次の規則に従って移動する。 ・最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P, Q, R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点 Qは辺 BA 上を, 点R は辺 CB上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし、点Pは毎秒1の速さで移 動する。 点P, Q, R は, それぞれ点C, A, B の位置に同時刻に到達し, 移動を終了 する。 (1) 図1の直角三角形 ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ S=エ オ 60° 30 A 20 B 図1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値 2回だけとりうる値を,次の〜②のうちからそれぞれ1つずつ選べ。 ただし、 移動には出発点と到達点も含まれるものとする。 5/2 ① 4/5 ② 10/3 とりえない値 カ (iii) 各点が移動する間における △APQ, BQR, CRP の面積をそれぞれ S, S2 S, どする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと 1回だけとりうる値 キ 2回だけとりうる値 ク もにどのように変化するかを答えよ。(あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 ケコ ± サシ ・秒後 ス -13- B 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0