学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

マーカー部分となるのがわからないです🙇‍♀️ a+bは>0と捉えるのですか。

113(無理関数の最小〉 考え方 所要時間は無理関数となりますが,その導関数の符 号を調べます。 解答点Oを原点とし, 東方向に軸の正方向,北方向に 9軸の正方向となる座標平面を定め,点Rの座標を(x, 0) と Q(a+b, a) a する。 千葉君が点Pから点Qに至る所要時間を f(x) とすると QR PR 0 R(x, 0) f(x) au bw ーbfp 1 {bVz?+6°+av(a+b-£)?+a°} abu 1 2c f'(z)= 6 abu 2V2+6 -2(a +b-2) 2V(a+b-a)2+? brv(a+b-a)?+a?-a(a+b-a)V+6 abuv? + が((a+6-)2+α S0のとき f' (z) < 0 a+bSeのとき f' (x) > 0 0SaSa+bのとき, f'(z) は次の式と同符号である。 -A20, BN 0, A+ B>0 のとき A? - B2 A-B= {bev(a+b-z)? +a?}?-{a(a+b-a)V22+83? = Br{(a+b-z)°+a°}-a°(a+6-z)°(2?+8) = 8(a+b-a)°(r?-α°)+α°{6ー(a+6-a)?} = 6(a+b-a)?(r+a)(x-a) + a°a°(a+ 26 -2)(x- a) = (z-a){6° (a+b-a)? (+a)+α°2° (a+26-a)} ここで,0Sハa+bのとき 6°(a+b-z)°(r+a)+α°r° (a+26-a) > 0 だから,f'(z) は-aと同符号である。 よって, 関数f(x)の増減表は次のようになる。 A+B は A° - B? と同符号です。 -a の因数をくくり出すよう にします。 0 a a+b f'(x) f(x) 0 極小 よって,f(x) はa=aで極小かつ最小となる。 したがって, 所要時間が最短となるのは, OR %=D a のときで ある。

回答募集中 回答数: 0