学年

教科

質問の種類

数学 大学生・専門学校生・社会人

といて欲しいです!!

数学演習Ⅰ (8) 1. 次の1次方程式を拡大係数行列を掃出すことによって解け。 また拡大係数行列の階数を答えよ。 (1) 3x - 2y = 5 (2) 5x-2y+z=1 3x +5y +2 = 13 (3) 2x +y +3z = 4x 2w 7w 5w (5) { 2. 次の1次方程式を解け。 (1) 7x + 3y = 0 (2) 3x - 2y + 4z = 0 2x -Y +4z = 0 (3) -x +y -3z = 0 +2y3z T 0 w +y 2 = 0 2w +2y +z = 0 W +2z 0 2w +x -2z = 20 3. 1次方程式 2x +3y 5 ax +y = b が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 4. 1次方程式 -2x +2y +3z = 4 T +y -4z = b ax +8y +z -6 が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列 A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 5. 1次方程式 3-2y+4z=0 の解と、 集合 2 (-))--(1) y = C1 (23) -3 7 C1, C2 は任意 との共通部分を求めよ。 6. 1次方程式 T +2 = 0 2x +y +2 = 0 5x +ay +2z 0 が自明な解æ=y=z=0以外の解をもつためのa についての条件を求め、そのときの解を求めよ。 +7y +2 = 18 +y 一之 x+ +3x+4y -X +3y 444 x+ +2x -Y -2z 2w +3x -2y -4z -10w +2x -7y +3z 6w 8 +11y +5z = -2 -4 = -5 -2 271 -7 + C2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

行列の範囲なんですが全くわかりません、解いて頂けると幸いです

数学演習Ⅰ (8) 1. 次の1次方程式を拡大係数行列を掃出すことによって解け。 また拡大係数行列の階数を答えよ。 (1) 3x - 2y = 5 (2) 5x-2y+z=1 3x +5y +z = 13 (3) 2x +y +3z 4 4x +7y +2 18 2w +π +y IN (4) 7w +3x+4y -2z 5w -x +3y ーえ 2x -Y +4z = 20 -X +y -3z = 0 +2y3z T 0 W +y ーえ 0 2w +2y +2 = 0 W +2z 0 2w +x -2z = 0 3. 1次方程式 2x +3y = 5 ax +y = b が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつためのα, b について また各々の場合の係数行列 A、 拡大係数行列 A'の階数を答えよ。 さらに (3) の場合に解を求めよ。 4. 1次方程式 -2x +2y +3z = 4 T +y -4z = b ar +8y +z -6 が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 5. 1次方程式 3æ-2y+4z=0の解と、集合 2 ( 1 ) - ~ (1) + ~ ( ²³ ) · = C1 C2 C1, C2 は任意 との共通部分を求めよ。 6.1次方程式 T +2 0 {2 2x +y +2 0 5x +ay +2z = 0 が自明な解x=y=z=0以外の解をもつためのαについての条件を求め、 そのときの解を求めよ。 (5) { 2. 次の1次方程式を解け。 (1) 7x+3y=0 (2) 3x - 2y + 4z = 0 (3) 2w +3x -2y -4z -10w +2x -7y +3z 6w -8x +11y +5z x+ +2x -Y |||||||| = -2 -4 -5 -2 -7 11

未解決 回答数: 1
数学 大学生・専門学校生・社会人

ベクトル解析の初歩です。 数学苦手過ぎて高校生レベルで躓いています。 例題1.2(2)ですが式を展開すると2枚目最後のように2(X1Y1+X2Y2)が残ってしまい1枚目教科書のように展開できません。 数学に2年ほど触れておらず本当にできなくなっているので誰か助けて下さい。お... 続きを読む

となることが分かります。 なお, 等号が成立するのは, 3点2,y,zが同一直 例題1.2:(1) R° 上の2点A(12,3), B(1, -1)の間の距離 ABを求めなさ い。 (2) = (21, 2), 9 = (y, 32), 2 = (21, 22) e R° とするとき, d2(2, z) S de(m,y) + d2(y,2) ん が成り立つことを確認しなさい。 解:(1) AB=v(1+ 2)? + (-1-3)? =D v9 + 16 =5. (2) de(z, 9) = V(E1-1)+ (12 - y2)?であるから, 示すことは V(21 - 2)?+ (T2 -- 2)?V(21-)? + (22- y2)2+V(y1- )? + (2-22 です。1 - 1 = Xi, 22 - y2 = X2,yi - 21 = Yi, Y2 - 22 = Y2 とおいてみ ると, C1- 21 = - (21 - 1) + (1 - 21)=D Xi+ Yi 02 - 22 = (22 - y2) + (y2 - 22) = X2 + Y2 となりますから V(X) + Y)? +(X2 +Y)?VX+X}+VY?+Y を示せばよいことが分かります。 一般に, 実数 A,Bに対して0SASBで あるとき, A°< B° なら ASBが成り立ちますから, 2 2 (Vx+ X3+ \?+) - (V(X)+Y) + (Xa+ Ya)}) 20 を示せばよいことになります。 平方根の中身はすべて0以上ですから, 上の 不等式の左辺を展開すると = 2V(X?+X3)(Y? ++Y})20 となることが分かります。 なお、 等号が成立するのは, 3点c,y,2" 線上にあるときであることも分かります。

未解決 回答数: 1