学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

[III] 1辺が1の正三角形 ABCにおいて, 辺BC, CA, AB 上にそれぞれ点D, E, Fをとる。 ここで, BD = p, CE = q, AF =rとし, 0<p<1, 0 <q<1,0<r<1とする。また,直線 (8) (1) 中文本ー AD と直線 BE の交点をGとし, ADEF の面積をSs とする。 e o ene 1 u ovitni 次の問いに答えよ。 [I]次の問いに答えよ。 (1) ACDE の面積を p, qを用いて表せ、また, Sをp, g, r を用いて表せ。 deiddus d Baal t (1) 0SSで, y= sin? ェ+6sin z cos.z +7cos"zの最大値と最小値を求めよ。 (2) CG をp, q, CA, TH を用いて表せ、 (2) 点Pがェ軸上の原点にある. コインを投げて, 表が出たらPをェ軸上, 正の方向に1だけ (3) 直線 CF が点Gを通るときのァをP, qを用いて表せ。 移動させ,裏が出たらPを負の方向に1だけ移動させる。コインを8回投げるときに, 8回 とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 (4) r= ad m 1 目でPがはじめて原点に戻ってくる確率を求めよ。 () r=と とする。点Gが線分 CF上を動くとき, Sの最大値とそのときのpの値を求めよ。 do (3) 整式 P(z) を-4-2で割ると余りがェー1,z?-2a-3で割ると余りが3z+1,?-1で ed ha otdimi dd ce ow 割ると余りがェー7である. P(z) をポー6z?+11z-6で割ったときの余りを求めよ。 O (4) a」 = 1, an+1 = abe Jedl volud liotmi1go ofqpg smo an によって定められる数列{am} がある.このとき, {an}の一般項を he bnd b) 4a, +5 vel evd noenon don 求めよ。 0geigtabmatm o 6 m shi sigmyO nnio adT (5) 不等式 2"<9637 < 20+1 をみたす整数nを求めよ, ただし, 必要であればlog1o2 =D 0.3010, de mO n blo a b log1o3 = 0.4771を利用せよ。 o o smd o o agnig エ+1 o gdhos lbaoh o d d dnodeab amn o 20d anichb bomd p [II」 4,6を正の定数とする。f(z) = al+ 1|+b -1」 とし, S(z) = - とおく 1 dO bom bi Tashi Jao d dip boboano als anwamduc) n0 次の問いに答えよ。 (1) a=1,6=2の場合,関数y= S(z) のグラフを描け. n dto u TO 20m TO (2) 0<a<bの場合, 関数y =D f(z)の最小値を求めよ,d aag t o 1-4 S0 (3) a= 1,6=2の場合,-2<z< -1において, S(z) をェの整式で表せ。 (4) 関数y=S(z)が偶関数であるための a,bの満たすべき条件を求めよ。 (5) 0<a<bの場合,関数y= S(a) の最小値を求めよ. bh got o o sl gndhai anew yad) ro dw m0 d do ow w

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャの問題についてです。 3番だけ範囲を求めていないまま解答に答えが書いてありますが、写真のように範囲を定めてはいけないのでしょうか?

/eの式で表される点 P(x, y) は,どのような曲線を描くか。 0 (2), (4)変数x, yの変域 にも注意。●20, -1<sin0<1, -1scos0<1, 2*>0 >媒介変数 t または0を消去して、x, yのみの関係式を導く。 72 曲線の媒介変数表示 例題 131 の のの x=cos0 x=3cos0+2 /r=/+1 ソ=sin°0+1 ソ=4sin0+1 x=2+2 lリ=2-21 p.129 基本事項 2 一般角0で表されたものについては, 三角関数の相互関係 sin'0+cos'0=1 などを利用するとうまくいくことが多い。 **ャ* o 2章 10 から FHIに代入して たソーでt20であるから よって 放物線x=y+1のy20の部分 sin' 0=1-cos?0 から 0s4=xを代入して また,-1Scos 0<1であるから 放物線y=2-x°の -1<x<1の部分 メ=3cos0+2, y=4sin0+1から (1-) t=y° x=y+I y20 1-(2) 20-号 ソ=(1-cos°0) +1=2-cos'0 ソ=2-x? 0=π 0=0 -1SxS1 -1 1 x よって (3) 0を消去しなくても, p.129 基本事項で学んだこ とから結果はわかるが,答 案では0を消去する過程も 述べておく。 COs =2, sin0=ソ-1 3 x-2 COs 0=- フくらないのか) 4 (x-2)(y-1) -=1 sir0+cos'0=1 に代入して 楕円 16 9 x=2+2-* から リ=2-2-から (-Dから xーy=4 た, 2>0, 2>0 から x=22+2+2-2t y=22-2+2-24 (2-)=2- 0nie|2.2-=2"=1 2 より 6Smieュ=0ia 20) A(相加平均)2(相乗平均) COP, 50+7 正の式どうしの和について は,この条件にも注意。 2*+2-22/2'-2t =2 , 2=2-すなわちょ=-tからt=0のとき成り立つ。。 2 よって 双曲線 ギーギー1 =1のx22の部分 4 - 4 血線を描くか。e (6) 類 関西大) 環介変数表示

回答募集中 回答数: 0