学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 写真のテータ関数の無限積表示(5.24)の式の1行目の形にどうやってしているのかと、命題5.22の(5.26)の証明を教えていただきたいです。

(b) テータ関数 ヤコビは楕円関数論の研究において, 次の級数を導入した。 9(2) = 22(-1)"-!g"-1/2)" sin(2n-1)Tu n=1 2(g/4 sin Tu-g/ sin 3Tu+q^/4 sin 5Tu-…). (5.23) 三 これはヤコビの楕円テータ関数(以下単にテータ関数(theta function))と呼 ばれるものの1つである. limd,(u)/2q'/4=Dsin Tu なので, 0,(u) は sin Tu 9→0 の一種の拡張と見ることができる。 伝統的な記号にならって, 以下 2ミe2miu a=2 q= eir, と書こう.gl<1だから Imr>0である. このとき(5.23)の右辺は TiT 2Tiu 9=e 9 2と(-1)"-1gm-1/2)?_2"-1/2 _2-n+1/2 =iこ(-1)"gm-1/2)°n-1/2 n=1 2i n=-00 = ig4z-1/2 (-1)"g"(n-1)z" n=-00 と書き直すことができる.右辺に3重積公式(5.22)を用いれば, テータ関数 の無限積表示が得られる: 0,(u) = iq'4z-1/2(1-2) II (1-g"2)(1-g"z-')(1-g") n=1. = 2q/4 sin Tu I (1-2g" cos 2Tu+g")(1-g"). 三 (5.24) n=1 命題5.22 0,(u) はuの整関数で 0,(-u) = ー6,(u). (5.25) 0 0(u) = 0 < (m,nEZ). 0,(u+1) = -0, (u), 9,(u+t) = -e-mi(r+2u)9, (u). (5.27) u= m+nT (5.26) 0 + 2u) [証明](5.25),(5.26) は(5.24)から簡単にわかる. また前節の無限積

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0