学年

教科

質問の種類

数学 大学生・専門学校生・社会人

練習7の(1)の解き方が分かりません。 できる方教えて欲しいです。

5 5 120 第3章 数学と人間の活動 同じようにして他の曜日についても 考えると,右の表のようになる。 曜日 日にち 日 月火水木金 練習 (1) 5月は31日まであるから, 6 2020年5月31日は基準日 から数えて92日目である。 2020年5月31日は何曜日 か。 (2) 2020年3月から2021年 2月までの各月の最後の日 が、 基準日から数えて何日 目かを調べ、 右の表を完成 させよ。 この表を利用して,各月の最終日が 何曜日となるかを考えてみよう。 3月は31日まであり、4月は30日 まであるから, 2020年4月30日は, 基準日の2020年3月1日から数えて 土 7m 61日目である。 7m+1 7m+2 水 7m+3 7m+4 7m+5 7m+6 61=7.8+5 10 と表せるから,表から,2020年4月30日は木曜日であることがわかる。 7で割った ときの余り 1 基準日から数えて 何日目か 31 61 92 122 3月31日 4月30日 5月31日 6月30日 7月31日 8月31日 9月30日 10月31日 11月30日 12月31日 1月31日 2月28日 3365 153 184 214 245 275 3306 234560 337 曜日 火木日火金月水土月末日日 水 (3) 2020年9月22日は基準 日から数えて何日目かを調 べ, 火曜日であることを確 かめよ。 (4) 2021年9月22日は基準日から数えて何日目かを調べ, 何曜日で あるかを調べよ。 10 15 20 09月22日が何曜日か調べてみよう。 閏年 150 2024年2月28日は、基準日から数えて 365×4(日目)である。 よって, 2024年2月29日は、 基準日から365×4+1 (日目)で ある。 さらに,練習6 の表を利用すると, 2024年8月31日は、2024年 3月1日から数えて 184日目であることがわかる。 よって、2024年9月22日は、2024年3月1日から数えて 18422(日目)であることがわかる。 以上から 2024年9月22日は、 基準日から数えて 365×4+1+184221667 (日目) 121 2020 である。 1667=7・238+1と表せるから, 2024年9月22日は日曜日である。 2024年9月22日の基準日から数えた日数 365×4+1 + 184+22を7 で割ったときの余りヶは,次のように考えてもよい。 365,184,22を7で割ったときの余りは, それぞれ1, 2,1である。 1×4+1+2+1=8 を7で割ったときの余りは1であるから r=1 第3章 数学と人間の活動 5 練習 (1) 2021年以降で初めて9月22日が火曜日となるのは何年か。 例4 の方法で調べよ。 7 (2) 20歳になる誕生日など 2020年3月1日以降で興味のある日の 曜日を、例4の方法で調べよ。 これまでの考えを発展させた、西暦y年㎜月d日が何曜日であるか を知ることができる「ツェラーの公式」とよばれる公式がある。 このような日常に関連した法則や規則を数学を用いてとらえることで, コンピュータプログラムを組むことができ, 生活をより良くすることに 25 つなげることができる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題解ける方いませんか…?

次の1から4までの問題をすべて解答せよ. 1 以下の問いに答えよ. n² - 2n-3 (1) an= -3n²+1 1-n (1) A1= 1 とする. lim an = -- を 論法によって証明せよ. 3 84x (2) an = 2+√n (3) 次の各性質をみたす数列の例をあげよ. とする. lim an =-∞ を 論法によって証明せよ. E n→∞ (a) {an}, {bn} はともに発散するが, {an+bn}は収束する (b){an},{bn}はともに収束するが, は発散する an bn (c) {an} は発散するが, {an} は収束する 2 次の集合の上限・下限・最大値・最小値を求めよ.ただし, 答えのみでよい. -{"=¹ | n=N} (2) A2= {mitm_mnes} mnEN n (4) A4 = {x ∈ Q|x²-2-1 < 0} m (3) A3= + (−1)n+1¹ m, ne neN} n 3 ③a> を定数とする. 数列 {an} を a1 = α, an+1 = V2an + 3 (n ∈N)によって定義す 3 2 る. このとき, {an} が収束することを示し, lim an を求めよ. ただし, {an} の収束性を示す際, n→∞ 「講義スライドの定理 2.7 (有界単調数列の収束)」 または 「教科書第1章定理3 (p.6)」 を用い ること.また, lim an を求める際, 関数 v2 +3 の連続性を用いてよいものとする. n→∞ ※ 「- <a <3」, 「a = 3」, 「a> 3」 と場合分けして議論してみよ) an+1 4④4{an}はan>0 (VEN) および lim =rをみたすものとする. 以下の問いに答えよ. n→∞ an (1) r <1のとき lim an = 0 が成り立つことを示せ . n→∞ (※r+e < 1 をみたす > 0 を1つとって議論してみよ) (2)r>1 のとき lim an = +∞ が成り立つことを示せ . n→∞ (※r-e> 1 をみたす > 0を1つとって議論してみよ)

回答募集中 回答数: 0