学年

教科

質問の種類

数学 大学生・専門学校生・社会人

〜xyz空間の平面の方程式〜 3点を通る平面の方程式を答える問。 xを平面の任意の点を表す、位置ベクトル pを点Pの位置ベクトルとすると (↑PQ×↑PR)・(x-p) = 0 ↪️外積 写真の下の方に計算方法の公式みたいなものがあるんですが、調べても... 続きを読む

y2空間上の平面がただ一つに決まる情報 (その2) 平面上にあり、 同一直線上にない3点の座標 (注意) この情報から法線ベクトルが求まれば, 平面の方程式が求まります.そこで導入するの が次の外積です 定義9 (ベクトルの外積 (教科書 p. 13)) zyz 空間の2本のベクトル a = (a,, 02, ag), b (も.6..6.)に対し, a とbのベクトルの外積 axbを次のように定義する %D axb=(uzby - aste-のbaba - nabi) (注意) 覚えるのが難しそうな式ですが, (教科書p. p) の覚え方がわかれば前単です ベクトルの外積の性質の一部(教科書 p. 14) *aとaxbは直交する。 内積で表すとa- (axb) %3D0 *bとaxbは直交する。 内積-で表すとb: (axb) %3D0 解説(ryz 空間の平面の方程式)リに空間内内の同一直線上にない3点P.Q.Rを通る平面 Ⅱの 方程式を外積と内積で求めています PO. PAに直交するベクトルとしにこれらの外校 が収れます。 作り方から POx PR は,平面1Ⅱの法線ベクトルになっていますす。 xを平面日の任息の点を表す位置べクトル、 pを点 Pの位置ベクトルとすると xア)(x P-0 という平面日の方程式が得られました

未解決 回答数: 1
数学 大学生・専門学校生・社会人

問題としてはこのURLのやつでexercise2.2.9の問題です。 2.2.9. Define T : ℓ^2(Zn ) → ℓ^2(Zn ) by (T(z))(n) =z(n + 1) − z(n). Find all eigenvalues of T.... 続きを読む

16:22マ l 全 の Exerc: 164/520 matrices, convolution operators, and Fourier r operators. 2.2.9. Define T:l'(Zn) - → e°(ZN) by ニ Find all eigenvalues of T. 2.2.10. Let T(m):e'(Z4) → '(Z) be the Fourier multipliei (mz)' where m = (1,0, i, -2) defined by T (m)(2) = i. Find be l(Z4) such that T(m) is the convolutior Tb (defined by Th(Z) = b*z). ii. Find the matrix that represents T(m) with resp standard basis. 2.2.11. i. Suppose Ti, T2:l(ZN) → e(ZN) are tra invariant linear transformations. Prove that th sition T, o T, is translation invariant. ii. Suppose A and B are circulant NxN matric directly (i.e., just using the definition of a matrix, not using Theorem 2.19) that AB is Show that this result and Theorem 2.19 imp Hint: Write out the (m + 1,n+1) entry of the definition of matrix multiplication; compare hint to Exercise 2.2.12 (i). iii. Suppose b,, bz e l'(Zn). Prove that the cor Tb, o Tb, of the convolution operators Tb, and convolution operator T, with b = 2 bz * b.. E Exercise 2.2.6. iv. Suppose m,, mz € l"(Z). Prove that the cor T(m2) ° T(m) and T(m) is the Fourier multiplier operator T) m(n) = m2(n)m」(n) for all n. v. Suppose Ti, T2:l"(Zw) → e'(Zn) are linear tra tions. Prove that if Ti is represented bya matri respect to the Fourier basis F (i.e., [T; (z)]F =A Tz is represented by a matrix Az with respect t the composition T20T, is represented by the ma with respect to F. Deduce part i again. Remark:ByTheerem 2.19, we have just proved of the Fourier multiplier operat Aresearchgate.net - 非公開

未解決 回答数: 1