学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)がわからないです。 やってるのですがここの単元はほんっとに基礎からわかりません、 暇な方、時間がある方詳しく回答お願いします。

N--ト OOO00 重要例題 70 ガウス記号とグラフ [a]は実数aを超えない最大の整数を表すものとする。 (1) [2.3], [1], [ーV2]の値を求めよ。 (2) 関数 y=[2x] (-1Sx<1)のグラフをかけ。 (3) 関数 y=x-[x] (-1<x<2)のグラフをかけ。 あ nSxくn+1ならば [x]=n が成り立つ。これを場合分けに利用する。 (2) -1SxS1より -2<2x<2であるから, 幅1の範囲で区切り, -2<2x<-1, -1<2x<0, 0<2x<1, 1<2x<2, 2x=2 で場合分け。 (3) -1S×S2から, -1<x<0, 0<x<1, 1<x<2, x=2 で場合分け。 (9 指針 実数xに対して, nを整数として 遊の大 [2.3]=2 [1]=1 (1) 2<2.3<3であるから 1S1<2 であるから -2<-/2<-1であるから (2) -1Sx<1から 16天2 12.3 t - +T 解答 る -2-1 0 1 2 3 * -2<2x<2 [10-1.e.1-] (8) -2<2x<-1すなわち -1<x<- 1 のとき y=-2 → (2) 1- こY4直送 2- --sx<0のとき 032x<1すなわち0Sxく のとき -1S2x<0すなわち ソ=ー1 2 100 1O 1 X 152x<2すなわち - ハ×<1 のとき 1 ソ=1 -1 2 すなわちx=1 よって,グラフは右の図 のようになる。 (3) -1Sx<0のとき [x]3D-1から 0Sx<1のとき [x]30 から 1Sx<2のとき [x]3D1から [x]=2 から よって,グラフは右の図 のようになる。 2x=2 のとき ソ=2 -2 ソ=x+1 3 ソ=x 1 ソ=x-1 x=2のとき ソ=2-2=0 -1 0 1 2 x ガウス記号と実数の整数部分 実数xが整数nと0冬か<1を満たす実数pを用いてx

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 写真のテータ関数の無限積表示(5.24)の式の1行目の形にどうやってしているのかと、命題5.22の(5.26)の証明を教えていただきたいです。

(b) テータ関数 ヤコビは楕円関数論の研究において, 次の級数を導入した。 9(2) = 22(-1)"-!g"-1/2)" sin(2n-1)Tu n=1 2(g/4 sin Tu-g/ sin 3Tu+q^/4 sin 5Tu-…). (5.23) 三 これはヤコビの楕円テータ関数(以下単にテータ関数(theta function))と呼 ばれるものの1つである. limd,(u)/2q'/4=Dsin Tu なので, 0,(u) は sin Tu 9→0 の一種の拡張と見ることができる。 伝統的な記号にならって, 以下 2ミe2miu a=2 q= eir, と書こう.gl<1だから Imr>0である. このとき(5.23)の右辺は TiT 2Tiu 9=e 9 2と(-1)"-1gm-1/2)?_2"-1/2 _2-n+1/2 =iこ(-1)"gm-1/2)°n-1/2 n=1 2i n=-00 = ig4z-1/2 (-1)"g"(n-1)z" n=-00 と書き直すことができる.右辺に3重積公式(5.22)を用いれば, テータ関数 の無限積表示が得られる: 0,(u) = iq'4z-1/2(1-2) II (1-g"2)(1-g"z-')(1-g") n=1. = 2q/4 sin Tu I (1-2g" cos 2Tu+g")(1-g"). 三 (5.24) n=1 命題5.22 0,(u) はuの整関数で 0,(-u) = ー6,(u). (5.25) 0 0(u) = 0 < (m,nEZ). 0,(u+1) = -0, (u), 9,(u+t) = -e-mi(r+2u)9, (u). (5.27) u= m+nT (5.26) 0 + 2u) [証明](5.25),(5.26) は(5.24)から簡単にわかる. また前節の無限積

回答募集中 回答数: 0