学年

教科

質問の種類

数学 大学生・専門学校生・社会人

微分方程式について質問です🙋 ときどき、答えの方程式をどこまで整理して解答すべきなのかが分からないときがあります。 例えば写真の問題(2)のようなときです。 このままの形でよいと書かれてありますが、どういう状態で解答を終了すべきかの目安はありますか? よろしくお願いします🙇

例題8-2 ベルヌーイの微分方程式:y′+p(x)y=f(x)y") 微分方程式 y/+y=xy3 について, 以下の問いに答えよ。 (1) z=y-2 とおくとき, zが満たすべき微分方程式を求めよ。 (2) 微分方程式 y'+y=xy の一般解を求めよ。 「解説 ベルヌーイの微分方程式:y'+p(x)y=f(x)y" (m=2,3,…) は 1階線形微分方程式の応用である。z=y' -" の置き換えにより, 1階線形微分 方程式になる。 1 [解答](1)z=y-2 より, z'=-2xy-y′ :: y³y'=== Z' 2 さて,y'+y=xy の両辺をy で割ると, y_y'+y^2=x -z'+z=x よって, z'-2z=-2x ・・ 〔答〕 1階線形になった! (2) ²'2z=0 とすると, ‥. A(x)=(2x dz dx =(x-2 = 2z 両辺をxで積分すると, fzzdz=f2dx ... log|z|=2x+C z=Ae²x そこで, z=A(x) e2x とすると, z'=A'(x)e2x+2zより, z'-2z=A'(x)e2x よって,²'-2z=-2x の一般解を z = A(x)ex とすれば, A'(x)ex=-2x ∴.. A'(x)=-2xe-2x -2xe-2x)dx=xe-2x+ ₂-2x + 1² e ²³² + c) e ²¹ = x + 1²/² + ₁ e²x Cezx よって、12/20a-s+/1/2+c^ よって, z=xe 1 2 1 dz z dx e z=y^2=1/1/12より、(x+12+Ce²)y=1 ,2 =2 - 2x + C ・・・ 〔答〕 このままの形でよい。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

統計検定準1級2021年6月の問6です。 [1]の解説で、1行目から2行目に変形できるのはなぜでしょうか。 直感的には分からなくもないのですが計算過程が知りたいです。

問6 2つのグループからのデータを判別する代表的な方法に,フィッシャーの線形判 別がある。 グループ 1, グループ2の2つのグループから2次元データを収集し たものとする。それぞれの標本サイズを ni, 72 とし, データを { 1,T2,...,Zn,}, ny 1. {¥1,92,.., Yng} とおく。 また, それぞれのグループの平均ベクトルを=- n1 8 y=- 722 1 n 72 i=1 722 i=1 とおく。 ただし,n=n+n2 である。 Yi とおく。 さらに, データ全体を {Z1,Z2,..., Zn}, 平均ベクトルをえ= とおき,さらに 〔1〕 各グループの分散共分散行列 S1, S2 とデータ全体の分散共分散行列 S をそれ ぞれ S1 = S2= n1 1 n1 n2 i=1 722 i=1 n (x₁ - x)(x₁ - x) ¹ i=1 (Yi — Y) (Yi – ÿ) - S= 1/2 (2₁-2) (2₁ - 2) T i=1 Sw=115₁ +25₂ n n n2 n1 - SB = 1/¹² ( x − z ) ( x − z ) ¹ + 2/2² (ÿ – z) (ÿ – z)™ n n Dis ① つねにS> Sw+SB が成り立つ。 ② つねにS=Sw + SB が成り立つ。 ③ つねに S < Sw + SB が成り立つ。 ④ 上記に正しいものは一つもない。 と定義する。ここで「は転置を表すとする。 3つの行列 S, Sw, SB の関係につい て、次の①~④のうちから最も適切なものを一つ選べ。 ただし, P > Q は行列 P-Q の固有値がすべて正であることを意味する。 10

解決済み 回答数: 1