学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)の解答のところで ①と書いてるとこ見て欲しいのですが、(1)より〜であるから のあとの式が理解できません。どうやってこうなったのか分からないので教えて欲しいです。

E: 24 第1章 実数と数列 13 単調数列とコーシー列 基本 例題 019 有界で単調減少する数列の極限 基本 例題 次の条件で定められる数列{an} について、以下のことを示せ。 >2として, a a1=2, an+1= = (a 2 - (n=1,2, 3, ......) この数列は正 (1) すべてのnについて 2 (3) 数列{an} は√2 に収束する。 (2) 数列{az} は単調に減少する。 指針 数列{an 数列{α 1つである。 指針 この漸化式はニュートン法(p.96 参照) によって構成され,近似値 2 束する (1)帰納的にan>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim|an-√21=0 を示す。 72-00 2を与える計算 定理 収 解答 α>2 an+1= 解答(1)α=2>0であり、漸化式の形から,すべての自然数nについてan>0である。 よって, 相加平均と相乗平均の関係から、任意の自然数nについて 以下 よ an+ an +2)=1.2√a. 2-√2 br ano an =2√2 であるから、すべてのnについて (2) 任意の自然数nについて an+1-an= - ½ (an+2)-an-³ 2-an² 2am 2-an 2≤0 (1)より、≧2であるから ゆえに an+1-an≤0 よって, an+1≦an であるから, 数列{an} は単調に減少する。 (3) 与えられた漸化式により an+12 an2-2√/2an+2 2an (an-√2) 2 2an an-√2 (an-√√2) 参 2an (1)より,0≦- an-√√2 2an an 1 であるから 2an 2 よって anti-√2 (an-√2) S 0san-√2(1)(a-√2) lim (12) (a-√2)=0であるから 8218 liman=√2 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

極方程式についてです。 点Pが右側にあるときにrがマイナスになっています。これは2枚目の写真のような考え方をしているのかと思いますが、そのときの図と赤枠の図が一致していないように思い、納得できません。 どなたかご説明お願いします🤲

148 基本 例題 84 2次曲線の極方程式 を l とする。点Pからlに下ろした垂線をPH とするとき,e= な点Pの軌跡の極方程式を求めよ。 ただし, 極を0とする。 OP a,eを正の定数,点A の極座標を (α, 0) とし, Aを通り始線 OX に垂直な直線 であるよう PH 基本 81,83 指針▷点Pの極座標を (10) とする。 点Pが直線lの右側にある場合と左側にある場合に分け て図をかき, 長さ PH を 1, 0, αで表す。 そして, OP=ePH を利用してr= 0 の式)を 導くが,<0を考慮すると各場合の結果の式をまとめられる。 vl P(r,0) H A(a, 0) 解答 ℓ 点Pの極座標を (r, e) とする。 点Pが直線lの左側にあるとき PH=a-rcose (*) 点Pが直線lの右側にあるとき P(r, 0) L H OP=ePH から PH=rcos0-a よって r(1±ecos0)=±ea (複号同順) 1±ecos0≠0 であるから r=±e(a-rcos 0 ) A(a, 0) X ea r= ①または tea≠ 0 から r (1±ecos0)≠0 π 1+ecos 0 ea -r= 1-ecos 0 注意14/02/23のとき、 図は次のようになるが,(*) は成り立つ。 ea e ②から -r= ②' 1+ecos (+) P(r, 0) H 点(r, 0) と点(-r, 0+π) は同じ点を表すから, ①と②は 同値である。 よって, 点Pの軌跡の極方程式は r= ea 1+ecos 0 -a- X -rcose 検討 2次曲線と離心率 1. 上の例題の点Pの軌跡は, p.122 基本事項から、焦点 0, 準線ℓ,離心率eの2次曲線を表し, 0 <e<1のとき楕円, e=1のとき放物線, 1 <eのとき双曲線 である。このように, 曲線の種類に関係なく1つの方程式で表されることが利点である。 2.例題で,点A の極座標を (a, π) [準線 l が焦点の左側] とすると,上と同様にして、点P

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0