学年

教科

質問の種類

数学 大学生・専門学校生・社会人

下の解説を見ても、文の2個目の問いが分かりません。分からないのは下の解説の赤線より下の部分です。

&を定数とするとき, 直線(k+2)x+(2k-3)yー5k+4=0 は kの値に関わりな すべての&について 成り立つ→んについての恒等式(→ 5) f(x, y)+kg(x, 3)=0→f(x, y)=0,g(x, y)=0 の交点を通る図形 162 重要例題34)交点を通る図形 l2:x+2y-5=0 の交点を通り, 直線 3x+2y=0 に平行な直線は |ウx+[エyー オコ=0 である。 (5 POINT! 解答 kについて整理して の 2x-3y+4+k(x+2y-5)=0 のがんの値に関わりなく成り立つとき ゃkについての恒等式。 2x-3y+4=0, x+2y-5=0 x=1, y=2 の距離 基58 これを解いて よって、A(ア1,イ2)が, ① が通る定点である。 またのは G, l2の交点を通る直線を表し,整理すると f(x, y)+kg(x, y)=0 の形をしている。 (k+2)x+(2k-3)y-5k+4=0 3 k= のとき, ① はx=1となり,これはx軸に垂直である。 素早く解く! 2 0で割れないため, 場合 分けが必要だが、, 共通テ ストでは省略できる。 よって,直線 3x+2y=0と平行にはならないから,不適。 AO k+2 3 をキーのとき,この直線の傾きは 2 2k-3 k+2 3 のが直線3x+2y=0に平行であるから 平行→傾きが等しい。 2 DA京 2k-3 →基66 →素早く解く! よって 2(k+2)=3(2k-3) ゆえに k= 13 4 お よって, 求める直線は 2.x-3y+4+ 13 (x+2y-5)=0 4 S..ま ゆえに 4(2x-3y+4)+13(x+2y-5)=0 よって ウ3x+エ2y-オ7=0

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青チャートの問題なのですが❔のところがわかんないです。なぜ2θ+α=90°のときとわかったのでしょうか?他の問題のように単位円で範囲を絞ってこうと思ってもよくわからなかったです、、

重要例題162 図形への応用 (2) 点Pは円×+y?=4上の第1象限を動く点であり,点Qは円×+y°=16上の第 使眼を動く点である。ただし, 原点0に対して,常に ZPOQ=90° であるとす また、点Pから×軸に垂線 PHを下ろし, 点Qから×軸に垂線QK を下ろ *更に ZPOH=0とする。このとき,△QKH の面積Sは tan0= のと き,最大値コをとる。 [類早稲田大) 重要159 針> AQKH の面積を求めるには,辺 KH, QK の長さがわかればよい。そのためには, 点P と点Qの座標を式に表すことがポイント。 半径rの円x+y=r上の点 A(x, y) は, x=rcos a, y=rsinα (αは動径 OA の表 す角)とおけることと, ZPOQ=90° より, ZQOH=ZPOH+90° であることに着目。 解答 OP=2, ZPOH=0であるから, Pの座標は (2cos 6, 2sin0) 0Q=4, ZQOH=0+90° であるから,Qの座標は (4cos(6+90°), 4sin(0+90°)) 04 2 P すなわち(-4sin0, 4cosθ) ただし 0°<0<90° ゆえに S--KH-QK= -4 K 0 OH2 * (2cos0+4sin0).4cos@ 2 =2(2cos°0+4sin@cos0) =2(1+cos 20+2sin20)=2{/5sin(20+α)+1} 三角関数の合成。 ただし, αは sinα= 5 2 COS Q= 0°<α<90°を満たす角。<aは具体的な角として表す V5 (0°<) α<20+α<180°+α (<270°) よって, Sは20+α=90° のとき最大値(2(V5 +1)をとる。 ことはできない。 0°<0<90° から 1 20+α=90° のとき tan20=tan(90°-α)= COS Q =2 sina sina= V5 2 COS Q= 75 tan a 2tan0 =2 1-tan?0 ゆえに よって tan?0+tan0ー1=0 (tan0 についての2次方程 式とみて解く。 アー1+ 5 2 0°<0<90° より tan0>0であるから tan 0= 練習 0を原点とする座標平面上に点A(-3, 0) をとり, 0°<θ<120° の範囲にある0 102 に対して, 次の条件(a), (b) を満たす2点B, Cを考える。 (a) Bはy>0の部分にあり, OB=2かつ ZAOB=180°-0である。 (b) Cはy<0 の部分にあり, OC=1 かつ ZBOC=120° である。 ただし、 △ABC は0を含むものとする。 △0AB と △OACの面積が等しいとき, θの値を求めよ。 2) 0を0°<0<120° の範囲で動かすとき, △OABと △OACの面積の和の最大 値と,そのときの sin@の値を求めよ。 [東京大)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

an≡19^n+(−1)^n-1・2^4n-3 (mod7) ≡(21−2)^n+(-1)^n-1・2・(14+2)^n-1 この部分ですが、2^4n-3から(14+2)^n-1となるのが何故かわかりません。 普通それだったら2^4n-4じゃないですか? それとも... 続きを読む

VEA TOR ムりゴ すべての自然数nに対して、整数 a.= 19" +(-1)"'2""-3 (n=1,2,3 .、 49= 14+5でもいいで すが 19-1-1ほう がのちのち計算しやす のすべてを割りきる素数を求めよ。 いです。 1の他数のかたまりをつく って消す。 14=0 解法の発想 21=0 =(-F-で --野 ません。このような場合は よって =0(mod7) 実験することで問題を理解し解答の方針が浮。 び上がってくることが多いのです。 7の倍数である。証明終 COMMENT なぜ証明が必要なのか? そこで、本書でも何度か出てきた 「実験 推測 証明」 数が7だとは論理上,断定できません。 の順で問題を攻略していきましょう。 問題で要求しているのは P解答 Oまずは実験をします a,= 19' +(-1)°- 2' = 21 =7×3 a,を割りきる素数は3か7だとわかる。 メで、 4末めるのは、 も7で割りきれることを ほかの as, a. のすべてを割りをる 数です。当然末める 素数は、a.を割り きる必要があります。 示す必要があります。 a= 19 +(-1)' - 2*= 329=D7×47 aを割りきる素数は47か7だとわかる。 のすべての a。 を割りきる素数を推測します すべてのa,を割りきる素数は7だと推測できる。 少し楽に記述できます。 Q 20-3 をもう一度取り上げ、合同式を用いて解いてみましょ 4a,aのどちらも割り きる素数は7しかあり ません。だから、 る素数も7だと推測で きます。 う。 推測が正しいことを証明します すべての自然数nに対して, 整数a,は7で 割りきれることを示す。 mod7 のとき,a,を計算して a,==0を目指す。 Theme 22 余りに関する問題Part2~合同式 253 252 第3章 整数問題の重要テーマ =19"+(-1)"2-(mod7)2 2

解決済み 回答数: 1