学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(カ)が成り立つから、4点B、C、E、Fは同一戦場にあるというのがわからないです。また※はなぜ成り立つのでしょうか?詳しく解説お願いしたいです🙇‍♀️

(2) ABC の頂点Aから辺BC (またはその延長)に下ろした垂線と辺BC (ま たはその延長) の交点をD, 頂点Bから辺CA (またはその延長)に下ろした 垂線と辺CA(またはその延長)の交点をE,頂点Cから辺AB(またはその延 長)に下ろした垂線と辺AB (またはその延長) の交点をFとする。 そして 直 線 AD, BE, CF の交点, すなわち垂心をHとする。 X 頂点Aを,D,E,F がそれぞれ辺 BC, CA, AB 上 (ただし, 3点A,B, Cを除く) にあるように動かすとき, つねに次の関係式が成り立つことがわかった。 AFX AB=AEX AC ..(*) 太郎さんと花子さんの会話を読んで、 次の問いに答えよ。 (ii) ●AB=12 ●AC = 8 ●AE = 6 ●AF=4 したがって 太郎 : このソフトでは, 実際の線分の長さも表示されるね。 花子:確かに(*) の関係式が成り立ちそうだね。 太郎 頂点Aを動かしてもつねに成り立つのかな。 が成り立つから 4点 B C E, F は同一円周上にある。 O ∠BFE=∠CEF ② <FBC + ∠ ECB = 180° F ⑩ 中点連結定理 ②方べきの定理 HE カ については,最も適当なものを、次の①~③のうちから一つ選べ。 î によって、 関係式(*)は頂点Aを動かしても成り立つ。 ⒸAFXFH = AEXEH ② BHxHF=CH×HE B' D キ については,最も適当なものを、次の①~③のうちから一つ選べ。 F, ① <BFC = ∠BEC ③ <FBE + ∠FCE =180° (次の⑩~③のうち、頂点Aを, 3点D, E, F がそれぞれ辺BC, CA, AB上 (ただし, 3点 A, B, C を除く) にあるように動かすとき、つねに成 り立つ関係式として正しいものを一つ選べ。 ク ① 三平方の定理 ③ 接線と弦の作る角の定理 (iv) 頂点Aを再び動かすと、 下の図のように AB=CB, BD:DC=4:1となった。 A POOLN ① AH×HD = BH×HE ③ BH×HE = BDxDC H D E C AB=CB より,線分BE は∠B の二等分線であるから、出 BH である。 また、点Eは辺ACの中点であるから. HE = ケ コ サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

答えはわかっているんですが、途中式がわかりません。 答えは1-25まで順番に8610122024124808840040212です。 わかる問題だけでいいです。

[問題1] Che NOASZO 0 行列 A = 0 20 について書いてある次の文章を読んで, 文章中の箱を埋めよ。 104 1. 行列 A を左側からかけることにより、 ベクトル 2. 5 問1 :)). 問26 に変換される。 問3 行列A による変換により、その大きさも、その方向も変わらないようなベクトルで、零ベクトルでな -3 いものを求めると, ベクトル 問4 0 となる。 TANT 問5 b. Com 行列A による変換により、 その大きさは変わるが、 その方向が変わらないような雰ベクトルでないべ 問6 20 問8 問72 -1 1 とき、 行列A による変換により、前者のベクトルの大きさは問9 倍になり、後者のベクトルの大きさ は問10 倍になる。 2 3. クトルを求めると2方向あり, それらは, ベクトル 6. 行列 A の逆行列を求めると, A-1 = 問16 1 4. 行列Aの3つの固有値を小さい順にかくと, 入 = 問11 問12 問13である。 5. 行列 A の行列式を計算すると問14 であり, 問15 ではないので、行列A には逆行列が存在すること がわかる。 8 問17 問20 は、 ベクトル 問23 とベクトル 問18 である。 この 問21 問24 問19 問220となる。 問25

回答募集中 回答数: 0