学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

残りの部分のうち〜のところで、「基本的な公式を変数変換して積分する」とはどういう意味でしょうか。 また、m>1の項は部分積分によって漸化式を作ってm=1に帰着するとはどういうことでしょうか。 教えてください。

楕円積分の前に, もっと簡単な積分をおさらいしておく、有理関数 多項式 多項式 arctan の組合せで書ける。詳しくは微積分の教科書)をご覧いただきたいが, お およそ次のような順番で証明する2)まず R(r) を部分分数分解する: R(z)の積分|R(z)dzは,有理関数,対数関数 log と逆正接関数 dim xteim 12 mj h mj Cim (2.2) R(z) = P(z)+2 2 + 2 と リーム+1 m=1((z-a,)+b})"* j=1m=1(c-a;)" ここで,P(x)は多項式,a, b, Cm, dpm, Ejm は実数,ム, le, m, は正の整数である.ゴ チャゴチャ面倒になったように見えるが,要は各パーツが簡単に積分できるよう に分解した,というのがアイディア. 多項式 P(z)は ST S(りひ 京をのきさ 2n+1 J* dz = (n:自然数) n+1 sbe という公式によって積分でき, 結果は多項式になる。 残りの部分のうちの m=1の項は, 基本的な公式3) ハ+ 食館 de : log (r-a), ミ C-a de S +1 arctan x, 2.c dc S? = log(z?+1) 2+1 を変数変換して積分する. m>1の項は, 部分積分によって漸化式を作ってm =1の場合に帰着する。

回答募集中 回答数: 0