学年

教科

質問の種類

数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。

No1 1. 次の関数fが I = [a,b]上可積分であることを仮定し、積分の値ff を求めよ. (i) f(x) = x, I = [0,a] (ii) f(x) = x2, I = [0,a] (iii) f(x) = e, I = [0, a] No2 1. (二進小数) 実数 r∈ [0, 1] が 1 1 T= r = 012 +0222 +..., (ここで a1,a2,a3=0,1) と表示されるとき、 r = 0.a1a203・・・ と書いて、 これをの二進数表示という. た だし、末尾に1が続く場合は切り上げて、 0 の続く表示としておく. たとえば、 12 の二進数表示は0.1 となる. 11 ならば、 0.01 である. (1) 1/3を二進数表示せよ. No3 1. 次の二重積分の値を求めよ. (1) (2²³ +y³)dxdy, 2) 10 (ポージ) andy, (2) No4 2. 次の3重積分を求めよ. (1) [√√ (x² + y² + 2²)²drdydz, (V = {(x,y,z)|0≤x,y,z ≤1}) (V = {(x, y, z)|x² + y² + 2² <a²}) fff, z²dxdydz, J 1 +9323 1. 次の二重積分の値を求めよ. offe (2³+y³)dxdy, (2) (2² - y²)dxdy, (2) (D={(x,y)|0≤x,y≤1}) (D={(x,y)| -1≤x≤1,1≦y<2}) (D={(x,y)|0≤x,y<1}) (D={(x,y)| -1≤x≤1, 1≤y≤ 2}) 2. 次の3重積分を求めよ. (1¹) ff (2² (22+y^2 +22)2dxdydz, (V = {(x,y,z)(0 ≤x,y,z <1}) [[[³drdydz, (V = {(x, y, z) x² + y² + 2² ≤a²})

未解決 回答数: 0