学年

教科

質問の種類

数学 大学生・専門学校生・社会人

4(4)(5) と 5 のリミットの計算ができません (4)はこれ以降どのようにすればいいかわからず、(5)と5の計算については全く分かりません どなたか教えてください

数学総合演習 (05/14, 解析) 解答は解答用紙1枚に全て記入すること. 裏面を使っても良い。 ・解答は 解の導出過程 (途中計算) も含めて, ていねいに記述すること. ・日付, 科目, 担当教官,氏名, 学籍番号, クラスを忘れずに記入すること. ※ 科目 数学総合演習1, 担当教官 美暁 解答用紙の提出について (ジャン シャオホン) 1. 演習レポート形式: 複数ページの解答用紙の写真を1つのPDFファイルにまとめて解答用紙に氏名、学籍番号、クラ スを忘れずに記入すること)。 ファイル上 (5MB)。 2 演習レポートのファイル名: "学籍番号演習期 pdf" としていただきますようお願いいたします。 (例: 学生 b1008300 について。 4月21日の演習の場合、レポートは "b1008300-0421.pdf になります。) 3.課題レポートの提出先: 以下の場所に提出してください。 [HOPE]-[数学総合演習11-EFGH]-数学総合演習1-解析 (1-EFGHクラス) (05/14) 提出締め切り:5月15日 (木) 午後6:30 まで。 解答の公開 5月15日 (木) からHOPEで公開されます。 1. (x+2)* を計算しなさい。 2. 次の一般項で与えられる数列のうち、 収束するものを選びなさい. an =2n+1,b=,c="ds=cosl n 3. 数列a.= (-)" が収束する範囲を求めよ。 また、収束するときの 72 極限値 lim (14) を求めよ. +80] 4. つぎの極限を調べよ。 4+8+... +4 n→∞ 1+3+…+ (2n-1) (1) lim n! (3) lim (5) lim V3n+1 72100 (2) lim n→∞0 (4) lim (1+1/+1/+ + n→∞ (6) lim noon- n 5.p>0.0>>とする。 4.+1=20 (1+pan)をみたす数列を考える。 1 + 2pan+s = (1+2pa) を示し, lim == 上を導け、 11-00 2p

未解決 回答数: 1
数学 大学生・専門学校生・社会人

ある遺跡から動物の骨と思われる化石が見つかった。この化石の元素分析をした結果、炭素12と炭素 14の割合が(化石の炭素14の量)/(化石の炭素12の量)=8.5/(10^13)であることがわかった。この動物は何年に死んだものかを次の資料を参考に求めよ。 写真参照 こち... 続きを読む

11 ある遺跡から動物の骨と思われる化石が見つかった. この化石の元素分析をした結果,炭素12 と炭素 (化石の炭素14の量) 8.5 であることが分かった. この動物は何年に死んだものかを次 1013 14 の割合が ( 化石の炭素12の量) の資料を参考に求めよ. 資料 地球上の大気や物質中には、 通常の炭素原子 「炭素 12」 とは異なる 「炭素14」とよばれる炭素原子が存在 する. 炭素 14 は, 大気圏上層において宇宙線の作用により窒素から生成される.ところが,炭素14 は不安定 な放射性原子であり, ベータ線を放出して崩壊し、再び窒素にもどる. この様に, 大気中では,生成と崩壊の バランスがとれており、 自然界におけるこれら2種類の炭素原子の量の比は一定である. この量の比は, 大昔 (炭素14の量) 1.2 も今も変わらないと考えられ,現在の測定値は である. ところで、 炭素 14の崩壊は, = (炭素12の量) 1012 5730年で半分となる割合で起こり、この5730年を炭素14の半減期とよぶ. 大気中の炭素は二酸化炭素の 形で存在し, 植物による光合成や、 その植物を食べる動物の食物連鎖によって, 動植物の体内に取り込まれて (炭素14の量) であると考えられる. ここで, 動植物が死滅 いく. つまり、動植物の体内においても, 1.2 (炭素12の量) 1012 すると, 生体内に取り込まれていた炭素14は崩壊して減っていくが、 食物連鎖の対象外となったため、 新た に炭素14が供給されることはない.

解決済み 回答数: 1