学年

教科

質問の種類

数学 大学生・専門学校生・社会人

五番の問題がわからないです。教えて欲しいです!よろしくお願いします^_^

予想問題 ] ⑤A, B, C3 組の夫婦6人が旅行先でゴルフ大会を開き 勝した。前日,当日,当夜の状況は次の通りである。 あ (ア)優勝者の配偶者は,当夜トランプをして負けた。 (イ)A氏は,前日気分がすぐれずずっと寝ていた。 +0+ (ウ)B氏は,C夫人に当日初めて会った。 3+0+ta (エ)B夫人は,1人の夫人と当夜ずっとおしゃべりをしていた。 (オ)B氏は,前日テニスをして優勝者に勝った。 ヨナ (カ)A夫妻は当夜トランプに参加し, A氏が勝った。 Q+A 4530030 上の状況から判断して、優勝者は誰か。 031-0+日 -A)S ,U10+0+0+0+0 (3) B*X+0+0+8+A ** (1) A氏 (4) C氏 (2) A夫人 (5) C夫人 口 ⑥ 全く同じ型の4戸ずつのアパートが図のように3棟並んで建ってい 8-0.58TAME=A る。ここに住んでいるA~Dの4人はおのおの次のように発言して いる。 A「私の家は棟のはしではなく,すぐ 南側の棟にBさんの家があります」 B「私の家は棟のはしで、1軒おいて 東側にCさんの家があります」 C 「Aさんの家とDさんの家とを結ん だ直線上に、 私の家があります」 D 「私の家の1軒おいて真北にEさんの家があります」 1 (1) Aの家は2である。 (2) Bの家は8である。 (3) Bの家は9である。 (4) D 5 以上のことから確実にいえるのは,次のうちどれか。 2 北 6 7 8 9 10 11 12 3 4 3組の夫婦6人を A, a, B, b, C,cで表す。 5 Point A夫妻をA, a, B夫妻をB, b, C夫妻をC,cで表す。 ただし 小 文字は夫人を示す。また, 優勝者をW, その配偶者をwで表す。 (オ)より, BWとなる。 (ア) (カ)より, A≠wとなり, a≠Wとなる。 (イ)と (ウ)と (ア)と(エ)より、 「1人の夫人」はc となり, c≠w,CW となる。 -10 (40) 以上より,残るのはB夫人だけとなり, B夫人が優勝者とわかる。 B SA AI ⑥ Point 確定した位置関係をもとに他の条件を加える。 Bの発言から、BとCの位置関係は次のようになる。 B A≠Wとなる。 よって, a≠w。 (オ)より, c≠Wとなり, C≠wとなる。 (オ)より, A 解説と解答・ C これに,A,C,Dの発言を加えると,4者の位置関係は次のよう になる。 北 C E (3) D

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(4)の式と(5)の式の説明を分かりやすく教えて頂けませんか?

第2章 確 家 12 5. 理(3) として採用されている. 以上の定理は確率測度 P が与えられていればどんな型の標本空間にも適 できる。もちろん, これらの定理が使えるためには, 右辺の確率の値がわか。 ていなければならない. 前に指摘したように, 標本空間が有限個の点だけをる むときは,この種の事象の確率の計算はとくに簡単になるので,いま議論をこ のような標本空間に限定することにする。 有限標本空間に対する事象 A の確率を求める際の第一歩は,標本点の各人 に確率を割り当てることである. これらの確率は, 確率の公理のはじめの2つ を満たすように割り当てねばならない。 すなわち,これらの確率はすべて非色 の数で,その和が1となるようなものでなければならない. 確率モデルが予測 に有効であるためには, 特定の標本点に割り当てる確率が,実験を多数回繰り 返したとするときその標本点が得られると期待される回数の割合と一致する上 うなものでなければならない. このような割り当ての可能性はわれわれの経験 や外部の情報,対称性に関する考察, またはこれらを一緒にしたものに基づく であろう.それゆえ,サイコロを転がした経験があってもなくても,図2の標 本空間の各標本点には1/36 の確率を割り当てることが現実的なのである。 標本点の総数を n とし, 各標本点に割り当てた確率を p1, P2, る。各標本点は1つの可能な結果を表わすから, それらは1つの事象である。 この種の事象を単一事象という. これらの事象を e1, @2, *… …, en で表わす. 明 らかにこれらは排反な事象である.さて, いかなる事象 Aも標本点の集合で あるから,Aはそれに対応している単一事象の和である.ゆえに, 公理 (3) に よって次の式が得られる。 2 *……, Pn とす n だすこと P(A} =2 P{e} =M p. と思た k UA ここで和は Aに含まれるすべての標本点についての和である.宝共具(3) 偶然をともなうゲームの多くは, 初期の確率論発展のための原動力であっ た。これらゲームの標本空間は有限個の標本点から成り,すべての標本点には 同じ確率が割り当てられている. これはたとえば,クラップ* とよばれるゲー ム(その標本空間は図2で与えられている)の場合にもいえることである. これ らの標本点の各々には確率1/36 が割り当てられる. n を標本点の総数とし, J(A) を集合 Aの中の標本点の個数とすれば, いまの場合はすべてのi=1, A A 2個のサイコロを用いて行なう 孫の取1

回答募集中 回答数: 0