学年

教科

質問の種類

数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(カ)が成り立つから、4点B、C、E、Fは同一戦場にあるというのがわからないです。また※はなぜ成り立つのでしょうか?詳しく解説お願いしたいです🙇‍♀️

(2) ABC の頂点Aから辺BC (またはその延長)に下ろした垂線と辺BC (ま たはその延長) の交点をD, 頂点Bから辺CA (またはその延長)に下ろした 垂線と辺CA(またはその延長)の交点をE,頂点Cから辺AB(またはその延 長)に下ろした垂線と辺AB (またはその延長) の交点をFとする。 そして 直 線 AD, BE, CF の交点, すなわち垂心をHとする。 X 頂点Aを,D,E,F がそれぞれ辺 BC, CA, AB 上 (ただし, 3点A,B, Cを除く) にあるように動かすとき, つねに次の関係式が成り立つことがわかった。 AFX AB=AEX AC ..(*) 太郎さんと花子さんの会話を読んで、 次の問いに答えよ。 (ii) ●AB=12 ●AC = 8 ●AE = 6 ●AF=4 したがって 太郎 : このソフトでは, 実際の線分の長さも表示されるね。 花子:確かに(*) の関係式が成り立ちそうだね。 太郎 頂点Aを動かしてもつねに成り立つのかな。 が成り立つから 4点 B C E, F は同一円周上にある。 O ∠BFE=∠CEF ② <FBC + ∠ ECB = 180° F ⑩ 中点連結定理 ②方べきの定理 HE カ については,最も適当なものを、次の①~③のうちから一つ選べ。 î によって、 関係式(*)は頂点Aを動かしても成り立つ。 ⒸAFXFH = AEXEH ② BHxHF=CH×HE B' D キ については,最も適当なものを、次の①~③のうちから一つ選べ。 F, ① <BFC = ∠BEC ③ <FBE + ∠FCE =180° (次の⑩~③のうち、頂点Aを, 3点D, E, F がそれぞれ辺BC, CA, AB上 (ただし, 3点 A, B, C を除く) にあるように動かすとき、つねに成 り立つ関係式として正しいものを一つ選べ。 ク ① 三平方の定理 ③ 接線と弦の作る角の定理 (iv) 頂点Aを再び動かすと、 下の図のように AB=CB, BD:DC=4:1となった。 A POOLN ① AH×HD = BH×HE ③ BH×HE = BDxDC H D E C AB=CB より,線分BE は∠B の二等分線であるから、出 BH である。 また、点Eは辺ACの中点であるから. HE = ケ コ サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の解説お願いします。計算過程もお願いします❗️

第2問 (必答問題)(配点 30) [1] 先生と花子さんは, 半径が等しい二つの円C:x+y2 = 4, C2x2+y2-8x+12=0 について話している。 二人の会話を読んで,下の問い に答えよ。 先生: C2 の中心の座標を求めてください。 花子:中心の座標は ア |です。 先生: 円 C, 上の点 (x1, y) における接線の方程式を求めてください。 です。 花子: 接線の方程式は (1) 先生は,さらに問題を花子さんに出題した。 ものを、次の①~③のうちから一つ選べ。 ⑩ x1x+yiy=2 ① x+y=2 ② x1x+yiy=4 3 x+y=4 x1 y1 X1 y1 花子: 接点の座標は カ です。 先生: よくできました。 イ 問題 円 C2の接線で, 円 C を面積の等しい二つの部分に分けるものが2本あ る。この2本の接線について,円 C2 との接点の座標を求めよ。 (3) カ に当てはまるものを,次の ⑩~⑤のうちから一つ選べ。 0 (4-√3, ±√3) ① (4-√3, ±2√3) (2) (3, ±√3) 4 (4+√3, +√3) (3) (3, ±2√3) と求まりました。 先生: よくできました。 また、 ク 0 先生これで(i) は解決しましたね。 次に (ii) を考えましょう。 太郎:y= キ としていいですから, 2次方程式 Q(x)=0 の解をα, βと して、 解と係数の関係を用いて, +β2 をk で表すことができます。 花子ということは, f(k)=²+B2+y²" とおいて, y=f(k) のグラフを考えれ ばいいですね。 先生: そうです。 太郎: ²+B2+y”のとり得る値の範囲は キ 0 テ ケ ク の解答群 に当てはまる ツ から一つずつ選べ。 ただし、 テ ① > イ ト の解答群 ① m テ a² +B² + y² ト ツ テ ウ に当 N ナニ ナニ ヌ ト に当てはまるものを、次の各解答群のうち (4+√3, ±2√3) ヌ に当てはまる数を求めよ。 まる については同じものを選んでも 4 S | 先生:では, 円 C2 上の点Q(p, 9) における円 C2 の接線の方程式は,どのよ うに考えて求めますか。 花子: 円 C2 の中心が原点に移るように円 C2 を平行移動した円が, 円 C です。 この平行移動で点Qが点Q’ に移るとすると, 円 C1 上の点Q における 円 C の接線の方程式は I となります。 このことから, 接線の方 (2) 選べ。 程式は I オ オ と求まります。 に当てはまるものを、次の各解答群のうちから一つずつ I の解答群 ⑩ (p+4)x+gy=2 ① (p-4)x+gy=2 ② (p+4)x+qy=4 ③ (p-4)x+qy=4 オ の解答群 ⑩ (p+4)(x+4)+gy = 2 ② (p-4)(x+4)+gy = 2 ④ (p+4)(x+4)+gy=4 ⑥ (p-4)(x+4)+gy=4 〔2〕 先生と太郎さんと花子さんは, 3次方程式に関する次の問題について話して いる。 三人の会話を読んで、 次のページの問いに答えよ。 問題k を実数とする。 P(x)= x³ (2k+1)x²+(3k²+7k-7)x-3k²-5k+7 とする。 (i) 3次方程式 P(x) = 0 が異なる三つの実数解をもつようなkの値の範 囲を求めよ。 (ii) k(i)で求めた値の範囲にあるときを考える。 3次方程式 P(x)=0 の 解をα, B, y とするとき ++のとり得る値の範囲を求めよ。 先生 まず, (i)から考えてください。 3次方程式 P(x)=0 が異なる二つの実数 解をもつようなんの値の範囲を求めましょう。 太郎: P キ 1=0 ですから, P(x) は x- キ で割り切れます。 P(x) キ で割ったときの商をQ(x) とし, 2次方程式 Q(x)=0 の 判別式をDとすると, 方程式 Q(x)=0 が異なる二つの実数解をもてば よいので, D ク 0 より ケ ① (p+4)(x-4)+gy = 2 ③ (p-4)(x-4)+qy=2 ⑤ (p+4)(x-4)+gy=4 ⑦ (p-4)(x-4)+gy = 4 コ セ が(i)の答えです。 | 先生 (i) の答えは (*) ではないよ。もう少し考えてください。 太郎 そうか。三つの解が異なるから, (*) の条件に Q という条件が必要でした。 花子:確かにそうですね。 じゃあ、 3次方程式 P(x)=0 が異なる三つの実数解 をもつようなkの値の範囲は ソ k. サ くんく- が正しい答えとなります。 または k. ス チ

回答募集中 回答数: 0