学年

教科

質問の種類

数学 大学生・専門学校生・社会人

48の問題で解説でわからないところがあったのですが 1つ目 まず両辺をルートxで割ってるのに何故kは割らなくていいのか? 2つ目 すごい基礎的なことだと思うのですがハテナのところがtの2乗となるのが何故かわからないです。自分は文字だけ見てtとしてしまったのですがルートの中身... 続きを読む

「解法3] =1, =4の特別な値から, kの必要条件となる不等式を求め,そこでの 48 1995年度 [1〕(文理共通) Level B 2 とを用いて与式を変形し、 任意の正の実数tに対して, その式が成 Vx ポイント n立つためのkの値の範囲を求める。 2<k|2+ Vx y という変形の後,上記の方針による。 x 「解法1] 1+ G+shと変形し。 <んと変形し, x+y -=tとおき, 2x+y 「解法2] x+ =1-tも利用し y て変形を続ける(定数の分離)。 挙号の成り立つときのkの値が条件を満たすことを示す。 解法1 明らかに&>0でなければならない。x+0であるから +yS/2x+y y Sk|2+ Vx X t= とおくと,①より 1+SA2+F ) (-1)-2t+ (2k°-1)20 yがすべての正の実数値をとるとき, tもすべての正の実数値をとる。 よって,任意の正の実数tに対して②が成り立つためのk (>0) の最小値を求める とよい。 2の左辺をf()とおく。 ポ-150のときは,十分大きなtの値に対してf(t)<0 と なるので不適である。 X, 4=f() R-1>0のとき,放物線u=f(t) の軸=-1 ->0の位 直に注意すると,2がt>0のすべてのtで成り立つ条件 は f() =0 の判別式ハ0 よって

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)がわからないです。 わかる方いたら教えてください

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

わかる方教えてくださいお願いします。

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0