学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

下線のウの直角三角形の直角を挟む2辺の長さが1cmであることは理解できたのですが、どうして片方が4分の3になるのかがわからないため、もしわかる方いましたら教えていただけると嬉しいです。 よろしくお願いいたします。

実戦問題1の解説 No.1 の解説 ア、イ、ウの面積の合計 STEP① ウの面積を求める 図Ⅱのア、イ、ウの三角形はいずれも相似で,相似比は4:3:1であ る。 アより,これらの直角三角形の直角をはさむ2辺の比は4:3であるか 3 らウの直角三角形の直角をはさむ2辺の長さは1cm 3 したがって,ウの直角三角形の面積は1×1 x 4 STEP② 面積比を利用する』 3 3 ウの面積の合計は12(16+9+1)= 8 3 cm (ウ) 5. ABCE = 1/2 ら, ア, イ,ウの三角形の面積比は4:32:12=16:9:1だから、ア, イ, 39. (ア) B -x26= 7 cm △BCE=×8×2=8[cm²〕, 1 cm (イ) 4 cm 3ア A 3 ウ 8 3 cm 4 →問題はP.284 [cm〕である。 m²となり,4が正しい。 2014ってどうして -cmである。 1 cm 4 cm No.2 の解説 △BDEの面積 STEPO 底辺が共通な三角形の面積比を利用する CCLA △BCEと△ADEは,底辺をそれぞれBC, ADと考えれば,底辺は共通で 面積比1:2はそのまま高さの比6cmを12 (2cmと4cm) に分けること になる。 同様にして △CDEと△ABE についても8cmを1:32cm と6cm) に分けることになるか X CHEROma |XV| 分かるの? -8cm 6 cm 4 cm 問題はP284 12cm、 D 16cm

未解決 回答数: 1