学年

教科

質問の種類

数学 高校生

数A なんで3で割るんですか、 「3!」で割らないのなんでですか

まとめ 場合の数のまとめ TE モ これまでに学習してきた,場合の数,順列, 組合せについて要点をまとめておこう。 |(1) 集合の要素の個数, 場合の数 ·個数定理, ド·モルガンの法則を用いて, 集合の要素の個数を求める。 場合の数を,樹形図,辞書式配列法などを用いて, もれなく,重複なく数え上げる。 計算においては, 和の法則と積の法則が基本となる。 * 360=2°-3°-5 の正の約数の個数 の正の約数の総和 TAE * (a+b)(p+q+r)(x+y) の展開式の項の数 2-3-2 (2順列 10人から3人選んで1列に並べる * 10人を1列に並べるとき (ア)特定の3人が隣り合う並べ方 (イ) 特定の3人 A, B, Cがこの順に現れる並べ方 10P3 順列 8!-3! 10!-3! 3のか→ 10人から3人選んで円形に並べる 10P3-3 円順列 (円順列)-2 異なる 10個の玉から3個を選んで首飾りを作る * 10人から学級委員,議長,書記を選ぶ * 10人が学級委員,議長,書記のいずれかに立候補する じゅず順列 10P3 310 重複順列 き (3) 組合せ 10人から3人を選ぶ .3本の平行線と,それらに交わる5本の平行線によってできる平行四辺形の数 10C。 組合せ C2×,C2 *正n角形(n24)について (ア) 頂点を結んでできる三角形の数 (イ) 対角線の数 C。 n(n-3)-2 c5個の文字を1列に並べる 10! 3!2!5! 同じものを含む順列 *a3個,b2個, または 10Cg×,C。 重複組合せ 3種類の果物から10個を選ぶ (1個も選ばれない果物があってもよい) sHio=3+10-1C10

回答募集中 回答数: 0
1/2