学年

教科

質問の種類

数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

解答の3行目と4行目がなんでこうなるのか教えて欲しいです!!

104 第4章 三角関数 基礎問 精講 63 三角方程式 < Osa SBSπとするとき cos(-a)=s COS をαで表せ. この問題は数学Ⅰの範囲でも解けますが、弧度法の利用になれる。 とも含めて、数学IIの問題として勉強します。 この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 ( α, β) も異なります. このタイプは,まず種類を統一 a =sinα を用いて, sinα = cos 2β ...... ① をみたす ならば一になります。この問題では 20 たとえば,右図の位置に動径があるとき,角度の 呼び方は, 与えられた範囲によって変わります。 もし、00<2ならばだし、一ヶ≦0<x 105 YA 11 0 01/11となっているので2=αと 2π (別解) cos2β=cos( 和積の公式より, ることです。そのための道具が cos Cos (フレーム) =sina で,これでCos にて きます。そのあとは2つの考え方があります。 =0 . sin (3+42) 0 または,sin (B-1+1/2) = 0 0<-≤1, os(a)より、cos2β-cos ( -2sin(+4) sin(B-4+ -(-a)になります。一αを音と考えてみたらわかるはずです。 cos (-a)=0 57 参照 = 0 解答 COS cos(-a) =sina より,①は, sind=cos(-a) sind= cos2β YA ここで,/ cos 28-cos(-a) m DEBET 2 0≤28≤2π, 0<-α≤ 右の単位円より, a π 3π -α, +α mi 2 = -1 0 B より 5π 0<ẞ+---+<* 4 2 4' 42 B+4号πB-+号-0 =π, 2 よって、B-2+1.41 β= π a 2'42 注 どちらの解答がよいかという勉強ではなく,どちらともできるよ うにしておきましょう. 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です。 ポイント 種類も角度も異なる三角方程式は 注参照 まず, 種類を統一する a + 3π 4 2'4 2 +α - 17 -α) と表現してはいけません。それはOS2Bだ 演習問題 63 からです。--+=+α 現です. 3 +αがこの範囲においては正しい表 櫻 (0) 第4章 as, OSBSとするとき, sincos2β をみたすβを αで表せ.

回答募集中 回答数: 0
数学 高校生

144.2 「y=(x+1/2)^2-5/4」と書いたところから直で 「したがって...」と記述してもいいですか?

重要 例題 144 三角方程式の解の個数 aは定数とする。0に関する方程式 sin²0-cos0+α=0 について,次の問いに答 えよ。ただし、0≦0 <2π とする。 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をaの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, x²+x-1-a=0 (-1≤x≤1) WATC ① 定数αの入った方程式 f(x)=αの形に直してから処理に従い,定数aを右 辺に移項した x2+x-1=αの形で扱うと、関数 y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では x=-11であるxに対して0はそれぞれ1個, -1<x<1であるxに対して0は2個あることに注意する。 解答 COS0=x とおくと, 0≦0<2πから 方程式は (1-x2)-x+a=0 したがって x2+x-1=a 5 f(x)=x2+x-1 とすると = ( x + 1 1/2)²³ - 1²/1/2 (1) 求める条件は、-1≦x≦1の範囲で, 関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 よって、 右の図から ≦a≦1 5 (2) 関数y=f(x)のグラフと直線y=a の共有点を考えて 求める解の個数は次のようになる。 5 4 5 [1] a<-1, 1 <a のとき共有点はないから 0個 [2] a=-- -1≤x≤1 5 [3] <a<1のとき f(x)=(x+ のとき,x=- から 2個 =1/3から 2 1 2 <x<0 の範囲に共有点はそ [6]→ [5] - 練習 ④ 44 よって調べよ。 ただし, 0≦02m とする。 [4]/ [3]+ [2] この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 [6] - [5] [4] - [2]+ [4]+ グラフをかくため基本形に。 iy=f(x) ya XA 11 0 -1<x<- 1 2' れぞれ1個ずつあるから 4個 [4] α=1のとき、x=-1 から 3個 0 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから2個 [6] α=1のとき、x=1から1個 π 重要 143 1 y4 1 O 12 1x [Q 20 152-7605724 0に関する方程式 2cos20-sin0-a-1=0の解の個数を,定数aの値の範囲に Cp. 226 EX90, 91 [3] 225 144 24 三角関数の応用 4章 23

回答募集中 回答数: 0
数学 高校生

143. この問題のようにθの範囲が書いていない問題は 0≦θ<2πと考えればいいのですか?? 解答があまりどういうことなのかピンとこなかったので自分が学んだ方法で解こうとしたのですが、この方法(写真2枚目)でも解けますか? 解ける場合どう解くか教えてほしいです。

224 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin20+acos0-2a-1=0 を満たす0があるような定 ure 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 ...... 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは, 放物線y=f(x)とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で, x軸と異なる2 点で交わる, または接する。 よって、求める条件は、 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小グラフ利用 D, 軸,f(k) に着目! 1 このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=α(a-8) であるから a(a-8) ≥0 (2 よって a≦0,8≦a a 軸x=1/28 について-1<<1から 2<a<2 ...... a>. IKACION cos0=xとおくと, -1≦x≦1 で, 与式は f(-1)=1+3a > 0 から f(1)=1+a>0 から ②~⑤の共通範囲を求めて <a≦0 ① [2] 放物線 y=f(x) が-1<x<1の範囲で,x軸とただ1点 ---- で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)ƒ(1) <0 1 3 a>-1 1 3 a=- (4) (5) ゆえに (3a+1)(a+1)<0よって-1<a<- a<- 1/13 1 またはa=-1 ① [3] 放物線 y=f(x)がx軸と x = -1 または x=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から [1], [2], [3] を合わせて -1≤a≤0 [参考] [2] と [3] をまとめて,f(-1)(1)≧0としてもよい。 3 [同志社大] ③3③ 練習 0 の方程式 2cos²0+2ksin0+k-5=0を満な ④143 を求め 検討〉 TAHO x2ax+2a=0 をαについ て整理すると x2=a(x-2) よって, 放物線 y=x2 と 直線 y=a(x-2)の共有点のx座 標が-1≦x≦1の範囲にあ る条件を考えてもよい。 解 編 p.139 を参照。 [1] \ YA + 11 D2 (794) [2] YA -1 Do 基本140 -1 YA -1 1 00 + X 大量 <D-[0] X

回答募集中 回答数: 0
数学 高校生

144.1.2 記述はこれでも大丈夫ですか??

とも1つの円 に着目 +2a=0& すると 2=a(x-l 放物線 リニュ -2) の共有 ≦x≦1の 考えてもより を参照。 YA 重要例題144 三角方程式の解の個数 Capry aは定数とする。0に関する方程式 sin' 0-cos0+α=0 について,次の問いに答 えよ。ただし, 0≦02とする。 00 [[大 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが、処理が煩雑に感じられる。 そこで、 x2+x-1-a=0 (-1≦x≦1) ① 定数αの入った方程式f(x)=αの形に直してから処理に従い,定数aを右 大辺に移項したx2+x-1=αの形で扱うと、関数y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 DET. www.e ] → 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では 方程式は したがって 解答 cos0=xとおくと、0≦0<2πから (1-x2)-x+α=0 x2+x-1=a f(x)=x2+x-1 とすると f(x)=(x+ (1) 求める条件は、-1≦x≦1の範囲で、関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 5 よって、 右の図から ・≦a≦1 (2) 関数 y=f(x)のグラフと直線y=α の共有点を考えて、 求める解の個数は次のようになる。 [3] x=-1, 1であるxに対して0はそれぞれ1個, -1<x<1であるに対して0は2個あることに注意する。 5 [2] a=-- 5 4 5 4' — 練習 144 A [1] a<-- 1 <a のとき共有点はないから 0個 のとき, x=-- <a <1のとき -1exelt 2 2 から 2個 5 4 -1<x<--<x- れぞれ1個ずつあるから 4個 [4] α=-1のとき, x=-1, 0 から 3個 <x<0 の範囲に共有点はそ [6] [5] [4] この解法の特長は、放物線を 固定して, 考えることができ るところにある。 [3]→ 友量[2]- [6]→ [5]- [4]~ [2]+ [4]→ グラフをかくため基本形に。 y=f(x) 1 重要 143 XA iO |1 TIR» 1 2 YA 1 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 +35850 08 [6] α=1のとき, x=1から1個 2π 225 [3] 2001 0に関する方程式 2cos2Q-sin0-a-1=0の解の個数を,定数aの値の範囲に p.226 EX90,91 ただし。 0≦0<2πとする。 4章 23 三角関数の応用

回答募集中 回答数: 0
数学 高校生

(2)がよく分からないんですが教えてください!🙇

(2) 次の問題について考えよう。 △ABCにおいて, BC=√2, ∠ABC=60° ∠ACB=45° とする。 辺ABの長さ, および sin <BAC の値を求めよ。 セ (1) 太郎さんは、この問題を解くために、次の構想を立てた。 c0760- 太郎さんの構想 ∠ABC, ∠ACBの大きさから,それぞれの対辺である辺 AC, ABの長さ の比の値を求める。 AC-AB+B=ABICBCo5 ABC AC AB COS ∠ABC= セである。 また, sin∠ABC= sin∠ACB= タであるから, 正弦定理により が成り立つ。 COS ∠ABC= である。 よって, AB=x とおくと, 余弦定理により チ チ 01/1/12 ① 6 2 ツ √6 ② 8:1/260 = ⑦ イディオム ト √2 A COS CABC- の解答群 (同じものを繰り返し選んでもよい。) 13²+C²-213C (2 2 x COSABC ²42 √6 2 - 28 - 1². B²+C² - 2Bc cosa -√2 (8 /6 3 √3 (4) 2 ⑨ /6 3 (数学Ⅰ・数学A 第1問は次ページに続く。) △ABH に着目すると AH= AH= (2) 花子さんは、この問題を解くために、次の構想を立てた 花子さんの構想 BCの長さを辺AB, ACの長さを用いて表す。 点Aから辺BCに引いた垂線と辺BCの交点をHとして,線分 AH 辺 が成り立つ。 ナ AC AB である。 また, BC=BH+CH により ⑤ BC= 2 AC であるから √3 2 ★ - AB= ネ である。 また チ ヌ AB+ ① 6 /6 sin ∠BAC= ネ ② 2 2 |AC ナム AB であり、△ACH に着目すると であることがわかる。 ただし, ヒト+ no--no UT へ3 一般に、三角方程式や後で学ぶ三角比を含む不等式を解くには、 のを利用する。 を用いた三角比の定義は次のようなものであった の解答群(同じものを繰り返し選んでもよい。) 16 2 ビ sino-y.cosx.tan02 (090°) (p.1671③) 象 180 のとき がって, A1, 0) 座標が... (3) 太郎さんの構想または花子さんの構想を用いることにより フェ - 29 - AH-AB 7 (3 数学Ⅰ・数学A 8 フ AC √6 3 AB √2 2 9 とする。 B ・AC √√3 5 OSKI (1) この2点存在する 半径1の円周上 なる点は、図の2 求めるのは、∠A 0-307 (2) 半径1の半円 となる 求めるのは、 4:1919 -15c51% 0- (3) 直線x=1 る点をTとす この半円の共 求める0は in 解答・ (1) (2) co (3) ta PRAC 20 (4 ん、花子さん を正しく理

回答募集中 回答数: 0
数学 高校生

(2)についてです。 Sinθ<0、2Sinθ+1が>0の時 Sinθ>0、2Sinθ+1<0の時 の2パターンに分けて場合分けしないのは何故ですか?😭

252 第4章 三角関数 Check 例題 137 三角方程式・不等式(②2) 0≦0<2πのとき,次の方程式・不等式を解け. (1) 2sin-cos0-1=0 考え方 まず, 三角関数の種類を統一する. Focus 解答 (1) sin=1-cos' を与えられた方程式に代入して, 2 (1-cos20) - cos0-1=0 2 cos²0+cos 0-1=0 つまり, sin²+cos20=1 などを用いて, sin0 だけ, cos0だけなどの形にする。 また, coso, sine のとり得る値の範囲に注意する. (cos0+1)(2cos0-1)=0 11 ここで, 0≦0<2πより, -1≤cos 0≤1 1 よって、 cos0=-1, ≤0<2π T, cos0=-1, を解いて, (2) 2cos20-sin0-2>0 5 3 (2) cos20=1-sin' を与えられた不等式に代入して, 2(1-sin²0)-sin0-2>0 p 0=7, ₁ 9= り、 2 sin²0+sin 0 <0 sin0(2sin0+1) < 0 ここで, 0≦0<2πより, よって, <sin0 <0 0≦02 で, 2 -1sin0≦1 <sin0 <0 を解いて, T <0<,<0<2n <2π 種類の統一 sin ²0+coste=1 costの式に統一する cose のとり得る値の 範囲を確認しておく VAI -1 T 三角方程式・不等式 注〉例題 137 では,(1) cos0=t (2) sin0=t とおいて考えてもよい。 co/cr/ 5 2 T 3 sin の式に統一する . π ** sin0のとり得る値の 範囲を確認しておく. YA 7 6 RYO H 1 A011 x 2 π 3 11 6 E π Che 例 1 1x 見 「考え 解

回答募集中 回答数: 0
数学 高校生

青チャートIIの三角関数の質問です。黄色線の不等式に=を何故つけないんですか?

224 00000 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin²0+acos0-2a-1=0 を満たす0があるような定数aの値の範 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち cos0=xとおくと, -1≦x≦1 で, 与式は x2 - ax+2a = 0 よって、求める条件は, 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って, 考えてみよう。 ...... 2次方程式の解と数kの大小 グラフ利用 D, 軸, f(k) に着目・・・・・ 2014 [同志社大] 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは,放物線y=f(x) とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で,x軸と異なる2 る条件を考えてもよい。 点で交わる, または接する。 標が-1≦x≦1の範囲にあ 編 p.139 を参照。 したか [1] YA このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=a(a−8)であるから よって a(a-8)≥0 a≦0,8≦a a 軸x=12/28 について-1<<1から 2<a<2… a>- 1/13 a>-1 f(-1)=1+3a > 0 から f(1) =1+a>0 から ②~⑤の共通範囲を求めて <a≦0 3 口 [2] 放物線y=f(x) が-1<x<1の範囲でx軸とただ1点 で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1)< 0 よって-1<a<- 3 口 [3] 放物線y=f(x)がx軸とx=-1またはx=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から a=- または α=-1 3 基本140 [1], [2], [3] を合わせて -1≤a≤0 参考 [2] と [3] をまとめて, f(-1)f(1) ≦ 0 としてもよい。 検討 x2ax+2a=0をaについ て整理すると x2=a(x-2) |よって, 放物線y=x²と直 y=a(x-2) の共有点 16 0 1+ 1 [2] VA 7 - 0 2 V 100 cos グラー 求める

回答募集中 回答数: 0
1/10