学年

教科

質問の種類

地学 高校生

問題の解説文、赤線から下の部分について上手く理解できません。分かりやすい解説をお願いします…

問5 東西に60km離れて並んだ地点XYと,地点Xと地点Yの中間の地点 Aから北に 48kmの距離に位置する地点Zで, ある地震を観測した。 次の 図3は,各観測地点の位置関係を示したものであり,地点Bは地点Aと地点 Zの中間の地点を示している。また,表1は,各観測地点で観測された初期 微動継続時間を示したものである。 表1より, 地点Xと地点Yでの初期微動 継続時間が等しいことから,この地震の震央は地点Z, 地点 A, 地点 B を含 む直線上にあることがわかる。 この地震について 震源から地点Aまでの距 へいたん 離と震央の位置の組合せとして最も適当なものを,下の①~④のうちから一 つ選べ。 なお、この地域の地表面は平坦であり, 震源距離 D (km) と初期微 動継続時間 T(秒) の間には,D=8T という関係が成り立つものとする。 5 Z 北 である。 問5 震源距離 D は, 初期微動継続時間 Tと比例定数によって D=kT と表される。 これを大森公式という。 比例定数は,通 常 6~8km/sである。 本間ではk=8とした。 問題の表1の値 を使用すると、 震源距離は, 地点 Xと地点Yでは8×6.25=50 km, 地点Zでは8×5.00=40kmである。 図1-5のように, 地点Xと地点Yを中心として震源距離 50 kmを半径とする円は地点Aを通る南北の線上で交わる。 地点 A 60 と地点X地点Yとの距離はそれぞれ =30kmであることか 2 ら、2つの円の交点と地点Aの距離は50-30=40kmである (図1-5)。震源が地点X, Yからともに50kmの距離にあると いうことは,地点X, Yを中心とした半径50kmの球面の交線上 にあるということであり,それは,直線XY と直交する平面上の, 地点Aを中心とした半径40kmの半円上に震源があるというこ とである (図1-6)。 したがって, 震源から地点Aまでの距離は 40km であることがわかる。 地点Aを含み, 直線XYと直交する平面は地点Zを含む(図1 -6)。 地点 Zから震源までの距離は40km であることから, 震 源を0とすると,Z・A・Oの3点からなる三角形は二等辺三角 形となり, △ABOと△ZBOは合同な直角三角形である。 した がって、震源の真上の地点である震央の位置が地点Bであること がわかる。 以上のことから② が正解である。 B |48km X A 60km 図3 ある地震の観測地点 北 B 24 km B 24 km 30km 地表 A Y 40km 40km 40km 50 km 震源 図1-5 図1-6 なお,図1-5で描いた2つの円に加えて, 地点Zを中心とし た半径40kmの円を描き, 地点X, Yを中心とする円との交点を 結ぶ共通弦を引くと, 3つの円の共通弦が地点Bで交わることか らも、震央の位置は地点Bであることがわかる (図1-7)。 表1 地点XYZにおける初期微動継続時間 B 観測地点 X Y Z x A Y 初期微動継続時間(秒) 6.25 6.25 5.00 図1-7 5 ・・・② 北 : L H

解決済み 回答数: 1
化学 高校生

(5)の考え方がわからないです

第1講 化学平衡ルシャトリエの原理 §I 化学平衡 問 水素H2とヨウ素 I2 の混合気体を密閉容器内で加熱すると、 その一部がヨウ化水素 HI となり、やがて次に 示すような平衡状態に達する。 H2(気) + I2(気) 2HI (気) △H=-9kJ... ① 化学反応の速度と濃度の関係を表す式を 「反応速度式」 と言い、その比例定数を 「反応速度定数」 と言 う。 ①式の正反応の反応速度をV1 反応速度定数を k」とし、 ①式の逆反応の反応速度をV2、 反応速度定数 をk2 とする。 v1 は H2 と I2の濃度の積に比例し、 V2 は HI の濃度の2乗に比例することが知られている。 次 の間に答えよ。 (1) 平衡状態とは、 正反応と逆反応の反応速度が等しく、見かけの上では反応が停止している状態である。 こ れを踏まえ、 ①式の濃度平衡定数K をk」 とk2を用いて表せ。 (2) 一定温度T [K] に保たれた容積 V [L]の容器に、 1.50molのH21.80molのI2を入れ反応させた。 1式に示 される平衡状態に達したとき、 容器内の12の物質量は反応開始時の 30.0%になっていた。 この温度におけ る濃度平衡定数K。 の値を有効数字2桁で求めよ。 (3)(2)の平衡状態に、 0.30molのH2を加え、新たな平衡状態に達したとき、 容器内に存在する気体のそれぞ れの物質量[mol] を有効数字2桁で求めよ。 (4) (3)の平衡状態から容器内の温度を変えると、 新たな平衡状態に達し、 容器内のH2 は 0.45mol となった。 この温度における濃度平衡定数K。 の値を有効数字2桁で求めよ。 (5)(4)では、容器内の温度をどのように変えたものと考えられるか、そのように判断した理由ととも せよ。 穹

解決済み 回答数: 1
物理 高校生

解説のABの電荷から出ている矢印がなぜこの向きなるのか分かりません

点 【解説】 第1問 小問集合 ばねaとばねbのばね定数をそれぞれka, k とする。 a と 今はともに自然長からしだけ伸びているので、おもりAとBの それぞれの力のつり合い式は以下のようになる。 kad=mg, k₁d=2mg AとBの単振動の周期をTA, TB とすると, ばね振り子の周期 これらより, a に対するbのばね定数の比は、2となる。 2m ka 【ポイント】 公式より、T=2= 2 である。以上より, ばね振り子の周期 m TB 2ka T: 周期 問2 帯電体Aは正電荷, 帯電体Bは負電荷なので,いずれも点 の答③ ばね定数の 質量 0につくる電場の向きはAからBの向きである。AとBの電気 量の大きさ Qが等しく,AOとBOの距離もRで等しい。 がって,AとBがそれぞれ点0につくる電場の強さ EA, EBは 等しく,点電荷による電場の公式より,E=EQとなる。 点電荷による電場を 以上より, AとBが点0につくる電場は, それぞれの電場を合 成して,A から B の向きへ強さ 2kQとなる。 R2 R2 また, 一様な電場からAには左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 ジ E=kQ 電気量 Qの点電荷から距離離れて いる点の電場の強さ 22 : クーロンの法則の比例定数 電場の向きは Q0 のとき電荷から 遠ざかる向き, Q <0 のとき電荷に近づ く向き。 一様な電場から +Q 受ける静電気力+Q A リング A 回転をはじめる方向 R EA EB B 一様な電場 B -Q 一様な電場から 受ける静電気力 2 の答 ① 3の答③ 変化を圧力と体積の関係を表すグラ A.Bの向き(?)

解決済み 回答数: 1