学年

教科

質問の種類

物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

(2)で問題文の言ってる意味が分かりません、、、どなたか教えてください😭

図1は、x軸上を正の向きに進む正弦波の先頭がx=0.40mの点にき た瞬間の位置 〔m] での変位y [m] を表している。 この時刻を t=0 s とする。r=0.60 m の点には波が固定端反射をする壁がある。 図2は, 軸上を正の向きに進む正弦波 (合成波ではない) のある位置での時 刻と変位の関係を表したグラフである。 y[m]A 0.01 壁 0.4 0.6 -0.01- x(m) 図 1 (1) この正弦波の波長入 〔m〕, 周期 T〔s], 振動数f [Hz], 進む速さ v [m/s] を求めよ。 y [m] (3) t=0.30s での合成波の波形を作図せよ。 (2) この正弦波が図2のように振動する位置xを,0m≦x≦0.40m の範囲ですべて求めよ。 0.01 0.2 -0.01 t(s) 図 2 ココを間違う! 波が形を保って平行移動して進むのを見ると媒質が波と一緒に進んでいると勘違いしてしまい がちだが,媒質は各位置に留まったまま方向に振動しているだけであることに注意しよう。 各位置での振動のようすは, 進行する向きに波を少しだけ平行移動させてみるとわかる。 解答例 (1) 図1より波長入=0.40m, 図2より周期 T = 0.20s である。(答)〔m〕 振動数f [Hz] と速さ” [m/s] は 固定端 入 0.01 1 1 = = 5.0 [Hz] () T 0.20 v=fl = 5.0 x 0.40=2.0[m/s] (2) 図1の波をx軸の正の向きに少し平行移動させると,図アの破 線のようになり, t=0s の直後に媒質がどの向きに動くのかがわか る。ココ よって、図2のようにt=0sの直後に y=0m から y 軸 の正の向きに媒質が動く点は, x=0mとx=0.40m である。 ... (答) -0.01 ... ・・・ (答) 0.4 0.6 〔m〕 -0.01 図ア y [m] T 0.01 0 0.1 70.2 t(s) 図イ

回答募集中 回答数: 0
物理 高校生

(ロ)と(ハ)についてなんですけど、 (ロ)の熱力学第1法則の右辺の2RΔTの「2」って何を表しているのですか? (ハ)では15RnΔTだけではだめで、なぜ3/2×2RnΔTと15RnΔTのふたつが必要なのかがわかりません

4. 以下の設問の解答を所定の解答欄に記入せよ。 解答中に分数が現れる場合は既約 分数で答えよ。 なお, 導出過程は示さなくてよい。 熱を通さない断熱材でできた内側の断面積Sのシリンダー容器 (以後、容器と 呼ぶ) がある。 気体定数を R, 重力加速度の大きさをgとする。 (日) (A) 図1のように容器を鉛直方向に固定し,熱を通す透熱材(熱をよく通す素材) でできた熱容量の無視できる質量 Mのピストンを容器内側の中央に設置して, Mのピストンを容器内側の中央に設置して、 ピストンの上側と下側にそれぞれ1 molずつ (合わせて2mol) の単原子分子の 理想気体を入れた。 ピストンで密封された上側と下側の理想気体の圧力、 体積 . 温度はともに等しく,その圧力をP体積をVo温度をTする。この状態 を状態1とする。 平常 左 次に状態で容器の中央に設置されていたピストンの固定を外すと、ピストン は鉛直下方にゆっくりと距離αだけ移動して静止した (図2)。 この過程におい て、ピストンで仕切られた理想気体は常に平衡状態に達しており、 ピストン上側 の理想気体の圧力はP 体積はV1で,ピストン下側の理想気体の圧力はP2 積はVであった。 この状態を状態2とする。 なお、ピストンと容器の間に摩擦 であった。 力はなく、ピストンは鉛直方向になめらかに動くことができる。 また、ピストン と容器のあいだに隙間はなく,ピストンで仕切られた理想気体は反対側に漏れ出 ることはないものとする。 平

未解決 回答数: 1
物理 高校生

(4)からの解説お願いします。学校でもらった問題集で類似問題探したんですけど、似たようなものがなかったので答えは初めの問題から62543です。

ⅣV 図のように、真空中において点0を原点とするxy座標平面上の点A(a, 0)に電気量 +4Q(Q > 0), 点B (-a, 0)に電気量9Q の点電荷を固定した。 y軸上の点(0, α)を 点C.x軸上の正の領域で点0から十分にはなれた点を点D. クーロンの法則の比例定数をと する。 また, 重力の影響は考えないものとする。 C(0, a) -9Q + 4Q B(-a, 0) A(a, 0) D 次の各問いについて それぞれの解答群の中から最も適切なものを一つ選び, 解答欄の数字にマー しなさい。 (1)x軸上において電場が0となる点のx座標を求めよ。 16 16の解答群 1 ① ④ 3a (2)点Cにおける電場の成分の大きさを求めよ。 17 17 の解答群 ① √2 kQ 3a² 5/2 kQ 2a2 5√2 kQ 4a² 5kQ 2a 5a 3√2kQ 2a2 13/2kQ 2a2 (3) 電気量+q(q> 0)の点電荷Pを点Cから点Dまでゆっくり運ぶのに必要な仕事を求め よ。 18 18 | の解答群 /2kQg √2 kQq √2kQg ① a 3a 5a 3√2kQg 5/2 kQq 7/2 kQq 2a 2a 2a (4) 点Dで点電荷Pを静かにはなしたところ, 点電荷Pはx軸に沿ってx軸の負の向きに運動 し、x軸上の点Eで速さが0となった。 点Eのx座標を求めよ。 19 19 |の解答群 a a 2a a 5a a (5) 点電荷Pの質量をm とする。 点電荷Pが点Dから点Eまで運動する間の速さの最大値を 求めよ。 20 20 の解答群 [kQq 5 ma /2kQq ma [kQq 2ma /3kQq ma /kQq ma /5kQg ma

回答募集中 回答数: 0
物理 高校生

画像の問題の問7の答えが③になる理由が分かりません。 解説をお願いしたいです。

第1問 図1のように、なめらかで水平な床の上に, なめらか な表面をもつ質量 M の台が水平に置かれている。 台の右側は, 点を通る紙面に垂直な軸を中心とした半径の半円筒状に, 直方体がくりぬかれた形をしている。 図1は床に鉛直な断面を 示しており、 面 AB は水平で, 曲面BCになめらかにつながっ ている。 点0を原点とし、 水平右向きにx軸, 鉛直上向きに y軸をもつxy座標をとる。 重力加速度の大きさはg とする。 床は十分広く、空気の影響は無視できるものとする。 運動はす べて図1の紙面内 (同一鉛直面内) で起きているものとし、 以 下の問いに答えよ。 [1] 台を床に固定し,質量mの小物体を面 AB上のある点から 速さで水平右向きにすべらせた。 小物体は半円筒に沿って 運動し、BC間の途中の点Dで台から離れ, 最高点 Qに達 したのち落下した。 x軸とODのなす角をα 点Dにおける 小物体の速さを 点Dから点Qまでに要する時間を する。 小物体の大きさは無視できるとする。 Vo B 床 図1 問1 小物体がBD間の∠BOP = 0 となる点Pにあるとき, 小物体の速さを 0, 1, g を用いて表せ。 問2点Pで小物体が受ける垂直抗力の大きさNを,m,vo, 0, l,g を用いて表せ。 問3 速さを, α, L, g を用いて表せ。 D 台 問4時間 t を,,αg を用いて表せ。 問5点Qの座標 (X, Y) が次の等式で表されるとき, gのうちから必要なものを使って書き表せ。 ① (5) の空欄に入る式または文字を,,,, X= ① × ② - ③ × ④ xt YQ = ① × ④ + ③ × ② xt- ⑤ x t² [2] 台の固定を外し、 静止した台の面 AB 上のある点から, 質量mの小物体を速さで水平右向きにすべらせた。 小物体は 半円筒に沿って運動してある高さまで上がったのち, 台から離れることなく折り返し, 半円筒に沿って降りて面ABに引 き返した。 小物体の大きさは無視できるとする。 問6 小物体が最大の高さに達したときの小物体の床に対する速さを 02, m,Mを用いて表せ。 問7面ABに引き返した小物体が,床に対して左向きに進むのは,mとMの間にどのような関係があるときか。 次の①~ ⑧のうちから最も適切なものを1つ選んで番号で答えよ。 (1 1 -M m<- (7) m<2M ② m> -M ③m <M 4 m > M ⑤ m<√M ⑥m> √2M ⑧ m>2M

回答募集中 回答数: 0
物理 高校生

教えてください🙏

18 リピートノート物理② リピートノート物理② 19 10 確認問題(1) 17問 月 ②この定在波の波長はいくらか。 26 波の伝わる速さ 水面を波が伝わっている。この波の隣りあう山の間隔は2.0mである。水面に小さな 浮きを浮かべると 10s間で5回上下に振動した。 ただし、浮きが最も高い位置に来たときから再び同じ 位置に来るときまでを1回の振動とする。 次の問いに有効数字2桁で答えよ。 (センター試験改) □ ③ 弦を伝わる波の速さはいくらか。 □ (1) この波の波長はいくらか。 □(2) この波の周期はいくらか。 ■ (3) この波が伝わる速さはいくらか。 27 重ね合わせの原理 左下の図は、お互いに逆向きに進む2つのパルス波のある時刻における波形を表 している。この後、2つのパルス波がそれぞれ矢印の向きに3目盛り進んだときの合成波の波形を右下の方 に作図せよ。 (センター試験改) 位 0 位 20 (2) おもりや弦は(1)と同じままで,振動数を小さくして基本振動をさせた。 ①このときに生じる定在波の波長はいくらか。 □②このときの定在波の振動数はいくらか。 ただし、おもりや弦を変えない場合は、 波の伝わる速さも変 わらない。 30 気柱の共鳴 管楽器は、管の口に息を吹きつけたときに生じる気柱の共鳴を利用して音を出す。 管内の 気柱の共鳴について,次の問いに答えよ (数値は有効数字3桁)。 ただし, 音の速さを341m/sとし、開口端 補正は無視できるものとする。 (1) 図1のように細長い管を用意し、 管の一端の近くに振動数∫[Hz] の音源を置く。 音源の振動数を0Hzから徐々に大きくしていくと, f=440 [Hz] で初めて共鳴が 生じた。 ①管の中に生じている定在波の波形を, 右の図に作図せよ。 ②このときの音の波長はいくらか。 笛の 管の長さ 10 (センター試験改) 図1 音源 細長い管 0 位置 0 位置 うなり バイオリンのある弦をはじくと, 振動数440Hz のおんさの音よりわずかに低い音がした。 バ リンの弦をはじくと同時におんさを鳴らしたところ, 0.5sの周期でうなりが聞こえた。 このとき,次の (センター試験改) v = fd 341= 440 A λ = s間に生じるうなりの回数はいくらか。 □③ 管の長さはいくらか。 のときに弦が発した音の振動数はいくらか。 (2)次に, 図2のように、同じ管の一端を手で閉じて同様の実験を行う。 音源の振 動数を0Hzから徐々に大きくしていくと. ある振動数のときに初めて共鳴が生 じた。 図2 音源 □ ① 管の中に生じている定在波の波形を. 右の図に作図せよ。 振動 図のように軽い弦を, 端Aで振動片につけ, 端Bでは しておもりをつるした。 次の問いに答えよ。 ■片を60Hzの振動数で振動させると, AB間 (長さ1.5m) に3 をもつ定在波が生じた。 のときの固有振動を, 何振動というか。 □ ② このときの音の波長はいくらか。 ③このときの音源の振動数を答えよ。

回答募集中 回答数: 0