学年

教科

質問の種類

物理 高校生

⚪︎11は有効数字を気にしていないのは何故ですか

などの は平均を表す。 」 は, その次に書く物理量の変化分を表す。 ①平均の加速度 x軸上を正の向きに進む物体が,ある時刻に点Pを速さ8m/sで 通過し, それから 3.5 s 後に点Qを15m/sの速さで通過した。 PQ 間の平均の加 速度の大きさは何m/s2 か。 回 平均の加速度 東向きに12m/sの速さで進んでいた物体が, その3s後に西向き に6m/sの速さになった。 物体の平均の加速度の向きと大きさを求めよ。 9 1等加速度直線運動 次の等加速度直線運動をする物体の加速度の大きさは, それぞ れ何m/s2 か。 (1) 静止していた物体が, 動き出してから 5.0s後に速さが20m/sになった。 (2)静止していた物体が動き出してから 4.0s間に12m進んだ。 (3)静止していた物体が動き出してから8.0m進んだところで速さが 4.0m/s になった。 10 ①4等加速度直線運動 一直線上を3.0m/sの速さで動いている物体が,一定の加速度 0.80m/s' で加速した。 加速し始めてから5.0s 後の速さは何m/sか。 [10] 15 等加速度直線運動 一直線上を2.0m/sの速さで動いている物体が,一定の加速度 4.0m/sで加速した。 加速し始めた位置から12m進むのに要する時間は何sか。 10 ③186m/2 陰 1m/s は,ヒトの歩 例題 1 直線運動 右の2つのグ A. B の運動の 刻を横軸にそれ (1) Aは時刻 2 通過する。 そ また 時刻 よ。 グラフ (2) Bはどの (3)Bの運動 [s] とする。 16等加速度直線運動 一直線上を10m/sの速さで走っている車が一定の加速度で加 速し,25m 進んだところで15m/sの速さになった。 加速度の大きさは何m/s2 か。 10 ① 等加速度直線運動のグラフ x軸上を,右のひtグラフで表 されるような運動をする物体がある。 (1) 物体の加速度の大きさは何m/s2 か。 v [m/s] 4.0 2.0 (2) 時刻t=0〔s〕に位置x=0[m] を通過したとすると, 時刻 t=5.0[s] における位置は何mか。 -t(s) O 5.0 アドバイス 速度の ① 変位,速度, 加速度 25.0m/s ③18km/h 5.0m/s ④AからBの向きに 1.8m/s 南東の向きに1.4m/s' ⑤成分:1.7m/sy成分:1.0m/s 60.4m/s,2.0m/s ③ 5m/s 25m/s 96.0.9.6m10 (1) 2m/s (2)8m 75.0m/s 112m/s2 12 西向きに6m/s2 (1)4.0 m/s² (2) 1.5 m/s² (3) 1.0 m/s² 7.0 m/s 2.0s 2.5 m/s² 17(1) 0.40 m/s² (2) 15 m 問題 未知・ 等加速 ・初め 正の v, c の向 12 第Ⅰ部 様々な運動

解決済み 回答数: 1
物理 高校生

解答が無いので、途中式を書いて答えを教えて欲しいです

題例 F=ma 問題2. A君が, 自作ロケットの打ち上げ試験を行った. ロケットは,エンジン点火後 秒間上向きの一定の加 速度αで上昇した. このロケットの運動を考えるために,下図に示したように, 地表を原点としてx座標を定義 した. ロケットはx軸に方向にのみ運動するとし, 空気の抵抗を無視して, また高さによって重力加速度が変化 することはないとして, 以下の問に答えよ. (1) エンジン燃焼終了時のロケットの速度vo を求めよ. (2) エンジン燃焼終了時のロケットの高度 (位置) ん。 を求めよ. (3) エンジン燃焼終了後のロケットの運動を,ロケットを質量m質点とみなし、下図に示した座標系で考える ことにする。 図に示した質点に,ロケットに作用する全ての外力を示し, Newton の運動の法則を用いてロ ケットの運動方程式を導出せよ. 全ての外力は,下図を解答用紙に書き写して図示すること. (4) エンジン燃焼終了時のロケットの速度vo と高度ho を用いて, 導出した運動方程式の解を求めよ. (5) エンジン燃焼終了後から, 最高到達位置に達するまでの時間, hを求めよ. (6) ロケットの最高到達高度 (位置)を求めよ. (7) 最高到達高度から地表に戻るまでの時間, tr, を求めよ. (8)a=2g,to = 50秒であったとすると, (1) から (7) の結果を用いて, ロケットの最高到達高度と,打ち上げ られてから地表に戻るまでの時間を計算せよ.ただし,g=9.8m/s^ とする. X ho m 地表

回答募集中 回答数: 0
物理 高校生

305の問題の(2)がよく分かりません。特に解説の赤線で引いてるところが理解できません。(1)と(2)っておんさが直角になるだけでそんなに変わるものなんですか?教えて欲しいですm(_ _)m

きるものとし、重力加速度の大きさを9.8m/s とする。 また、弦を伝わる波の速さ [m/s] は, 張力の大きさ を S[N],線密度を p[kg/m] とすると, (1) 弦を伝わる波の波長 [m] を求めよ。 (2) 弦を伝わる波の速さ [m/s] を求めよ。 (3) このときの振動子Pの振動数f [Hz] を求めよ。 と表されるものとする。 305 おんさと弦の共振知 図1に示すように,おんさ の振動部Aに糸の一端をつけ、滑車を通して他端におもり をつるした。おんさの振動数は60Hz, AB間の糸の長さ は 2.0mである。 おんさを振動させたところ,腹が6個の 定在波ができた。 2.0kg 例題 57,313,314 2.0m A B 60Hz 図 1 おもり -2.0m (1) 糸を伝わる波の速さ [m/s] を求めよ。 UA B (2) (1)で,おんさと糸との関係を、 図2のように変えたと きできる定在波の腹の数はいくつか。 例題 57 図2 作図 306 気柱の振動知 長さが 0.60m の閉管内の気柱があ る振動数の音で共鳴した。 このとき,管の底以外に定在波 の節が1か所あった。 音の速さを3.4×10°m/sとし、 開口 端補正は無視する。 0.60 m (1) 閉管内にできる定在波のようすを図示せよ。 (2) 気柱内の音波の波長は何mか。 (3) 気柱内の音波の振動数fは何Hz か。 例題 58 ・気柱の共 OB の管口か (1)この音 (2) この (3) 位置 (4) ピス 310 して 管の 長さ 補工 (1) (2) とき (3

解決済み 回答数: 1