学年

教科

質問の種類

数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
数学 高校生

どういうことですか?

BECAUTS 684 第10章 空間のベクトル Check 例題 考え方 解 練習 390 人気 (1) 直線l:x-1=y-1 390 平面の方程式の決定 平面α の方程式を求めよ. (2)直線m: 2 平面β の方程式を求めよ. 18 *** a) S z+1を含み, 点A(1,-2,3)を通る +9A 2 x+1_y-1²-1 3 に垂直で,点B(2, 2, 2) を通る F (1) 一直線上にない3点を通る平面はただ1つ決まるから, 直線上に適当な2点 を定め、その2点と点Aを通る平面の方程式を求める (2) 直線m⊥平面βより,平面Bの法線ベクトルは直線mの方向ベクトルである mmmmm よって, 4 89+9A ADELINE (1) x=1, x=0 として,直線上の2点B(1,1,-1), (0,-1,1)を定める. 一直線上にない3点A,B,C を通る平面上の任意の点をP(x,y,z)とする.> AP=sAB+tAC (s,t は実数) が成り立ち, AP=(x-1, y+2, z-3), AB = (0,3,4), AC=(-1, 1,-2) であるから、 01 (SI-A (x-1,y+2, z-3)=s(0, 3, -4)+t(-1, 1, -2) よって, x-1=-t, y+2=3s+t, z-3=-4s-2t これより, s, t を消去すると, 2x-4y-3z=1 (別解) x=1,x=0 として,直線上の2点B(1, 1, -1), C(0, -1, 1) を定める. また, 平面αの法線ベク トルを n = (a,b,c) (n=0) とする. 0 AB=(0, 3, -4), AC = (-1,1,-2) だから, AB より, n ・AB=36-4c=0 nLAČKY, (2) (2, -3 x=1, 2 などでもよい、 ZCVA ニテ < [[tAC la A SAB 平面αの式を P T B ax+by+cz=d n・AC=-a+6-2c=0 これより、その1つは,α=2,6=4,3 よって, 求める平面の方程式は、法線ベクトルがAはCから下 =(2,-4,-3) で,点A(1,2,3) を通るので, 2(x-1)-4(y+2)-3(z-3)=0 より 2x-4y-3z=1 (2) 直線mの方向ベクトル u = (2,3,4)は,平面βの法 線ベクトルになっているから,平面βの方程式は、 2(x-2)+3(y-2)+4(z-2)=0 2x+3y+4z=18 とおき, 平面αを通る 3点の座標を代入して もよい。 なお,点Aのほか, 適 当な2点をとればよい. 21100 平面βの法線ベクトル はn=(2,3,4) より, 2x+3y+4z=d と表せ る。これが点Bを通る ことを利用してもよい。 (1) 2点A(0,-2,-1), B(3,4, -1) を結ぶ線分ABを2:1に内分する点 をCとする. 点Cを通り線分AB 考え 食

回答募集中 回答数: 0
数学 高校生

Dの2教えてください

集合と命題 16 確認問題3 A 集合 {1,2,3}の部分集合をすべて求めると, 部分集合は全部でア個ある. B 次の空欄に適する記号を∈, C, つから選べ。 同じ記号を何度使ってもよい. (1) 偶数全体の集合Aについて {8} イ A. 11 ウ 4. (2) A={3n-1|n∈N, n≦10} について (3) A={n|nは24の約数},B={nnは12の約数} について A I B. Cv={1,2,3,4,5,6,7} を全体集合とする. 次の集合に属する要素をすべて答えよ. (1) A={1,3,6},B={3,6,7} のとき, AUB = { オ}. (2) A={1,3,6},B={3,6,7} のとき, AnB= カ} (3) 2の倍数の集合を 4, 3の倍数の集合を B とするとき, AUB={キ (4) A∩B={2}, A∩B={3,4}, AUB={6,7}のとき, A= ク (5) A∩B={2}, A∩B={3,4}, AUB={6,7} のとき,B= ケ} (6) A∩B={2}, A∩B={3,4}, AUB={6,7} のとき, AUB={ コ コ α, は実数とする. 次の空欄に入る適切な言葉を下の選択肢から選べ。 同じ選択肢を何度使っ てもよい. (1) 命題 「すべての実数a について Va²=a」はサ (2) 命題 「4の倍数ならば 16の倍数である」 は シ (3) 条件α=-5は条件α²25のス (4) 条件 4+3=0は条件æ=1のセ (5) 条件 α = 1 は条件α=1のソ (6) 条件-3≦x<1は条件 「z<-3または≧1」の (7) 命題 「≠ 1 ならば (z-1)2 ≠0」 は命題 「æ=1ならば (æ-1)20」のチ (8) 命題 「(æ<1またはæ>3) ならば |x| >1」 は命題 「|x|≦1ならば1≦x≦3」 のツ 選択肢 1.真である 2. 偽である 3. 逆である 4. 裏である 5. 対偶である 6. 否定である 7. 必要条件であるが十分条件ではない 8. 十分条件であるが必要条件ではない 9. 必要十分条件である 17

回答募集中 回答数: 0
1/5