学年

教科

質問の種類

数学 高校生

題意からn番目のバスで到着した患者で最小の整理券を貰った患者の待ち時間を求める問題で解答では写真の様に4(n^2-n/2+1)〜となっていますが、()の+1は自分の診察時間も含めてしまうので要らないと思ったのですがどうでしょうか

[1] ある病院では午前9時からの診察に対して, 病院に午前8時に到着する送迎バ スから午前9時30分に到着するものまで、合わせて10便の送迎バスを10分間隔 で運行し,早く来た患者から順に1番、2番、3番の整理券を渡し,整理券の 番号の順に診察することとしている。診察は午前9時ちょうどに始め,1人につき 4分で終了し,終了すると直ちに次の患者の診察が始まるとする。 ある日, 来院し た患者はすべて送迎バスを利用し, k番目の送迎バスには人の患者が乗っていた (k=1,2, ..., 10)。 1.0 60.6010. 55.0 Fra 便名 到着時刻 患者数 整理券番号 180円 221.21.10 1 8:00 1人 1 exes. s. 68 2 8:10 2人 2,3 $235 ESAS, AQ ress. rass. 3.0 0825. 1.0 EETE, 1801 1803 180E 8:20 3人 4,5,6 es. 186. 18.0 BIE.IE. 2.0 ... : 0288. 10188.00 10 9:30 10人 21CD Tees 08 erep, 2081 erse. COSE. EDGE II S.I 0. SCOD SSSA (1) この日発行された整理券で最も番号の大きいものはアイ 番であり,この整 理券を受け取った患者は9時30分に到着してから診察が始まるまで ウエオ 分待つこととなる。 まで 186 BEA (数学II・数学B 第4問は次ページに続く。) 028 DEBA 1881 DEBA 8087 each se 1.4=216

未解決 回答数: 1
数学 高校生

2番の右上の最後の3行の計算の仕方がわかりません

第4章 020 のとき,関数 y=cos20+√3 sin 20-2√3 cos0-2sin0 ①について 次の問いに答えよ. (1) sin0+√3 cosa=t とおくとき,tのとりう (2) ①tで表せ. (3) ①の最大値、最小値とそれを与えるの値を求めよ. 精講 60 (2) の式と似ていますが, 60(2)は sinx と cosの2種類のま 図は sin0, cos 0, sin 20, cos 20 の4種類の式である点が います。 誘導がついているとはいえ,それに従うだけでは(2) づまります。 ポイントは, sine, cos から, cos 20, sin 20 を導く手段が けられるかどうかです. =cos20+√3 sin20+2 cos 20+√3 sin20=t-2 よって、 y=ピ-2-2t -12-21-2 1-60520+ 3160520 2 11/21+1=2 |101 注 sin20, cos20 がでてくると, cos20に変えられることを覚えてお きましょう。 (3) (2)より,y=(t-1)2-3 (1)より, -1sts√3 だから t=-1 のとき, 最大値1 t=1 のとき, 最小値 -3 次に, t=-1 のとき -1-2v3 --3 1√3 sin(9+1)=-1 だから,sin(0+/4/5)=1/2 よって、+1= 6 0= 9=-77 2 また, t=1のとき 2 2sin (+4)-1 だから、sin (e+/-/12/ 16 解答 π (1) t=sin0+√3 cose =2(sin 3 +cos • ■合成して0を1 にする よって、0+= 以上のことより, .. 0=- 3 6 6 π 2 2 最大値 1 0=- 最小値 -3 == 2 =2 π - sin cos o + cos osin / / =2sin (0+/4) 4)=2sin(+/-) π π より、+1/7だから、 2≤sin (0+- 2 ..-1≤t≤√3 (2)=(sin0+√3cost) 3 3 =sin'0+2/3 sincosd+3cos20 1-eos +√3sin2+3. 2 2番 1+cos20 2 の公式 v3 ポイント sin sin20 cos 20 だから cos cos20 cos 20 (asin0+bcose) sin20, cos 20 の式 -1- Sia20 演習問題 61 12倍角半角の OMO のとき, 関数 y=2sin0-2√3cos0+cos20-√3 sin20 の最大値、最小値を求めよ.

未解決 回答数: 1