学年

教科

質問の種類

数学 高校生

階差数列を記述で解くときいつも n-=1のときa1=3・1^2-4・1+3=2より ①はn=1でも成り立つ と書いていたのですが、 とある模試の解説で n-1のとき3・1^2-4・1+3=2=a1 と書いていました。 私の記述方法でも問題ないのでしょうか??

基本例題 105 階差数列 (第1階差) 次の数列{an}の一般項を求めよ。 2,7,18,35,58, 1). (1+ 指針 数列を作る規則が簡単にわからないときは, 階差数列を利用するとよい。 数列{an}の階差数列{bn} とすると bn=an+1-αn () ME {an}: a₁ az a3 a4 {bn}: 616263 n≥20 これは 誤り! ...... n≧2のとき an-1 an CENA n-1 an=a₁+Σbk k=1 -TEX n≧2のときについて, 数列{an}の一般項を求めた後は, それがn=1のときに成り立つか どうかの確認を忘れないように。 THES n-1 =2+6≥k-1 k=1 bn-1 k=1_ n-15I 「n≧2」としないで上の公式αn=a+bk を使用したら, 間違い。 なぜなら, n-1 n=1のときは和②bk が定まらないからである。 k=1 n-1 an= a₁ + Zbr=2+(6k−1) 次の数列の CHART {an}の一般項わからなければ 階差数列{an+1-α,} を調べる =(( [~) • ( [~$ ) + ( [+s}}& 解答 数列{an}の階差数列を {bn} とすると((+1)+2=2 $105 {an}: 2,7,18,35,58, {bn} 5, 11, 17, 23,...... 数列{bn}は,初項 5, 公差 6の等差数列であるから bn=5+(n-1)・6=6n-1 120 =2+6・1/12 (n-1)n-(n-1) =3n²-4n+3 ...... ① 求めよ。 3n²-4n+3=3.12-4・1+3=2 TONOVOLEO p.5383 n=1のとき 初項はα=2であるから, ① はn=1のときも成り立つ。 an=3n²-4n+3 したがって (S+R)+(1+BS) I+ (1+x) 12 7 18 35 58 5 11 17 23 +6 +6 +6 a n≧2に注意。 (2+)2 nではない ことに注意。 (€+S+7)+(S+1)+1= Ekiak= n(n+1) C nの代わりにn-1 とおい たもの。 初項は特別扱い は1で1つの式に変 される (しめくくり)。 + (1+wx + + U ! $$U +(1+ms)}(1+8)

回答募集中 回答数: 0
数学 高校生

高一の2020年度の進研模試(3)が分かりません 星のマークがついた写真の部分についてです ①判別式はどれでしょうか ②また24/5<a<8 の24/5はf(0)、8はf(4)のことを指すとすると、4<a<0のようになっているように思えるのですが間違いですか 質問が分... 続きを読む

f(x)のグラフの軸は直線 x = 2/2 a ラフがx軸から切り取る線分の長 次の図のように,x軸との共有 -1 ✓ 10 +1 フが点(+1,0)を通るから, a² 4 = 0 = 0 -a+8=0 -(-36) = -2±2√10 J2 J4 がx軸から切り取る線分の長 なる2つの実数解α , β (a <β) 2 をDとすると (-a+8) 32 -4) 解をもつから, D>0 より > 0 7 このとき, f(x)=0を解くと x=a± √a²+4a-32 2 であるから a-√a²+4a-32 A= 2 よって, β-α=2より α²+4a-32=4 a²+4a-36=0 これを解いて a+√a²+4a-32 a-√a²+4a-32 2 2 √a² +4a-32=2 ここで 3√10より B= = a+√a²+4a-32 2 a=-2±√2°-(-36)=2±√40=-2±2√10 -2-2√10 <8,4<-2+2√10 24 よって / <a<8」1 5 =2 であるから ① に適する。 よって α = -2±2√10」2 (3) y=f(x)のグラフがx軸の 0≦x≦4の部分 と共有点を1つだけもつのは,次の3つの場合が考 えられる。 10 (i) x軸の 「0<x<4」の部分と1点で交わり か つ, 「x<0 または 4 <x」の部分と1点で交わ る。 (ii) x 軸の 「0≦x≦4」の部分と点 (0, 0) または 点 (4, 0) のいずれか1点のみで交わる。 (i) x軸の 「0≦x≦4」 の部分と接する。 ここで f(0)=-a+8, f(4)=-5g+24 (i) のとき D=12-4ac f(0)f(4) < 0 (-a+8)(-5a+24) < 0 J2 (a-8) (5a-24) <0 J4 DC0点くっつく oga = 8 24 40a 2 y=f(x)/ VV 4 y=f(x)| 4

回答募集中 回答数: 0
数学 高校生

11月の進研模試の数学の問題です。 (2)で、マーカーを引いている部分は、 なぜ"未満"ではなく、"以上"という意味の記号を用いるのか教えてください。

配点 解答 (1) (2) B2 完答への 道のり [1] 集合と命題(10点) NORIS 実数xに関する条件 g を次のように定める。 ただし は正の定数とする。 p:|x-2<3 ...... ① q: x²-ax-2a² <0 全4点 全日本 A 6点 (1) 不等式 ① を解け。 (2) SHOP [s] gであるための必要条件であるようなaのとり得る値の範囲を求めよ。 条件の不等式を解くと |x-2|<3 -3<x-2<3 -1<x<5 すなわち a≦l かつ 条件g の不等式を解くと x2-ax-2a²<0 A x-2のとり得る値の範囲を求めることができた。 B条件の不等式を解くことができた。 5 a so (x+a) (x-2a) <0 α >0 より, -a < 24 であるから -a<x<2a... がg であるための必要条件であるということは, 命題 g♪が真であ るということから, ③ の範囲が②の範囲に含まれればよい。 したがって _isa かつ 2a≦5 a ≤ 1 > 0 より 求めるαの値の範囲は 0 <a ≤1 NO 042 -110 -a Qales 560 2a -1<x<5 35- sa 絶対値を含む不等式の解 c>0 のとき |x|<c-c<x<c ass IN HIS D-75 0<a≤1 ・③α <βのとき、 2次不等式 (x-a)(x-β)<0の解は α<x<B 命題pgが真であるとき pg であるための十分条件 gはp であるための必要条件 という。 条件を満たすもの全体の集合を P, 条件g を満たすもの全体の集会 をQとするとき 命題pg が真である ⇒PCQ SUOE

回答募集中 回答数: 0