学年

教科

質問の種類

数学 高校生

[2]の場合分けで=がつく理由を教えて下さい 4/3aまでだったら4/3aの時も最大値になりませんか?

して 値 し こ 含む 3次関数の最大・最小 4 DO aを正の定数とする。 3次関数f(x)=x-2ax²+ax 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大] 基本 211 重要 214 指針 文字係数の関数の最大値であるが, p.329 の基本例題211と同じ要領で, 極値と区間の端 での関数の値を比べて最大値を決定する。 f(x)の値の変化を調べると, y=f(x)のグラフは右図のようにな YA る(原点を通る)。 ここで, x= a 以外にf(x)=f a =(1/3)を満たす (01/27) 3 f(1/3) 6章 (これをaとする)があることに注意が必要。 O a 10/3, α ( 1 <a)が区間 0≦x≦1に含まれるかどうかで場 a よって, a x 3 #²² y=x²³-2ax² +a²x 合分けを行う。 直線y= 4a²は 27 解答 x=1で持するので(と)を因数に f'(x)=3x2-4ax+α² f(x)=x(x2-2ax+α²) a =(3x-a)(x-a) =x(x-a)^2 から xC .…. a a f'(x)=0 とすると x= a f'(x) + + ¹ ( ²² ) = ²/² ( - ²3/3 a)² = 24/7 0 |極大 a>0であるから, f(x) の増減表 極小 [1] YA f(x) / 4 -a³ 0 a²-2a+1 は右のようになる。 27 a 4 ここで,x= 以外にf(x)=3 を満たすxの値を求めると 27 4 f(x)=1/27から x³-2ax²+a²x- a =0 487 x²³-²9x²0x² = ·93 27 a ゆえに x- =0 xキ であるからx= 3 したがって、f(x) の 0≦x≦1における最大値 M(α) は ① [1] 1<// すなわち4>3のとき M(a)=f(1) ①で割る②敷をとる(不等号逆にする [2] a saya すなわち ≦a≦3のとき M(α)=f [3] 0</1/3 a <1 すなわち0<a< 3 のとき M(α)=f(1) 以上から 0<a<2,3<a のとき M(a)=a²-2a+1 3 4 10 a a 4 a ≦a≦3のとき 3 3 4 M(a)= a³ 27 速度 (6) 曲線 y=(x)と直線ソニーでは、x=gの点において接するから、バー2/ は (x-23 ) で割り切れる。このことを利用して因数分解している。 練習 ③213 aは正の定数とする。 関数f(x)=-1+1/10ax²-2ax+α の区間 0≦x≦2にお ける最小 8 ... 430 [2] YA 4 279³ 0 [3] y 1 a 3 最大 -最大 1 a a²-2a+1 最大! a 18 331 章 37 最大値 ・最小値、方程式・不等式

回答募集中 回答数: 0
数学 高校生

(2)の(1)と同様にしてー という所について質問させてください。 これが言えるのって、三角形ADFと三角形BEDと三角形CFEは底辺と高さが同じ、よって面積が等しくなるため、三角形ADFの面積がt(1-t)ならば、三角形BED=三角形CFE=t(1-t)になるというこ... 続きを読む

指針>(1) 辺の長さや角の大きさが与えられていないが, △ABCの面積が1であることと, AD:DB=BE: EC=CF: FA=t:(1-t)(ただし,0<t<1)となるよろにと (2) ADEF の面積をSとするとき, Sの最小値とそのときのtの値を求めよ。 1 bCz 重要 例題164 三角形の面積の最小値 ate 基え る。 1丈 (1) AADF の面積をtを用いて表せ。 M を 1%) AABC と △ADF は ZAを共有していることに注目。 回 =-AB-ACsinA(=1), AADF= -AD·AF sin A (2) ADEF=△ABC-(△ADF+△BED+△CFE) として求める。… Sはtの2次式 となるから, 基本形a(T-カ+qに直す。 ただし,tの変域に要注意! AD:AB= ti "y aAD: tAB AD + DB: t+ 1-t=A あてAB1 AF:AC-1-t:) AF-(レt) 解答 OA (1) AD=tAB, AF=(1-t)AC であるから 検討 般に 1-t Aではすと AADF: AD·AFsin A 2 △AB'C' △ABC AB'·AC AB-AC F (1-t/4後に キってきたがけ△ABCA t(1-t)AB·ACsinA IDO A B-tE 1- C -AB·ACsinA=D 後か C B よってAADF=t(1-t)AB·ACsin 111に)xん (2)(1)と同様にして B C =t(1-t) |(*) 3-3t+1=3(f-t)+1 ABED=ACFE={(1-1) OA=3{e-t+(1-})+1 ABED=ACFE=t(1-t) S=AABC-(△ADF+△BED+△CFE) | よって St S=3f-3t+1 =1-3t(1-t)=3f?-3t+1=3{t- 1。 ゆえに,0<t<1の範囲において, Sは -DAS =Dーのとき最小値 1 をとる。 D-CDC 4 「最小 0 (D, E, Fがそれぞれ辺 AB, BC, CA の中点のとき最小となる) 2 JAm+An 1 D D+BD,-SVD·DD

回答募集中 回答数: 0