学年

教科

質問の種類

数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

未解決 回答数: 1
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0
1/437