学年

教科

質問の種類

数学 中学生

4の答えは、x=二分の23、y=240です。5は五秒と8分の143です。解説お願いします😭

128 ・2 42 太陽の黒点 B 第三問 図1において, 図形ABCDEFは, 長方形から直角三角形と正方形をそれぞれ1つずつ切 り取ってできた図形であり,BC=42cm, CD=DE=EF = 8cmです。 点Pは点Bを出発し, 秒速 2cmで辺BC上を点Cまで動き, 点Cに到着したら停止します。 点Pを通り、辺BCに垂直な直線を l とします。 直線ℓが図形ABCDEFを2つの図形に分けるとき, 点Bを含む図形をS,点Cを含む 図形をTとします。 点Pが点Bを出発してからx秒後の図形Sの面積をycm²とします。 図IIは,点Pが動き始めてから 停止するまでのxとyの関係をグラフに表したものです。 0≦x≦8 では原点を頂点とする放物線, 8≦x≦17, 17≦x≦a ではそれぞれ直線となっています。 なお, 点Pが点Bにあるときのyの値は0 とし、点Pが点Cにあるときのyの値は図形ABCDEFの面積とします。 このとき、 あとの1~5の問いに答えなさい。 図 Ⅰ y=ax+b 16 128 板と遮光板 接眼レンズと に合わせて投 のである。 図形 S l 64 42 A16秒後 P→ 9 2cm/ 14 128 1 図ⅡIのグラフの中のαの値を求めなさい。 1288 y=ax² 2 辺AFの長さを求めなさい。 図形丁 16 128=64a 3x640=1848 f= 2x² 47 34秒経 4 2 n 8 tie 18 3 xの変域が 0≦x≦8 のときのyをxの式で表しなさい。 64 672 30 C 16 42 小さい 32 tis 図ⅡI (8, 198 )( 17, 1) + y (cm²) 128 128 [12 240 0 最も適切なも 128 64 x=17 (8,128) y = 8 222 480410 16 125= ご 128 2256 270 x 17 16 4 図形Sの面積が図形ABCDEFの面積の1/12 となるときのx,yの値をそれぞれ求めなさい。 480 192 16 10 256 240 x=15 ×16=240 16 16 96 7 4 5 図形Sの面積と図形Tの面積のうち,大きい方から小さい方をひいたときの差が380cm2 となる のは,点Pが動き始めてから何秒後と何秒後ですか。 16x=240 x=15 a x (秒) =15 ま Jala+b I 16240 16 80

回答募集中 回答数: 0
数学 中学生

3番教えて頂きたいです!

右の図1のように, 台形ABCDと長方形EFGH がある。 台形ABCD は, 1辺が8cmの正方形 ABID と, <CID=90°の直角二等辺三角形CDI に分けることができる。 また, AB=EF,BC=FG である。 右の図2のように, 台形ABCDと長方形EFGH を,4点B,C,F,Gがこの順に直線ℓ上にある ように置く。長方形EFGHを固定し,台形 ABCD を直線ℓにそって矢印の方向に毎秒2cm の速さで平行移動させ,点Cが点Gと重なった ときに停止させる。 ASTA JNetis B F IC 点Cが点Fと重なったときからx秒後の台形ABCDと長方形EFGHが重なった部分の面積を ycm² とする。 このとき,次の(1)~(3) に答えなさい。 ただし, 台形ABCDと長方形EFGHは同じ平面上にあり, #100101-20 直線lに対して同じ側にあるものとする。〈京都〉 (1)x=3のときのyの値を求めなさい。 また,x=5のときのyの値を求めなさい。 (各5点) ABCDの映像 図1 A (ア)xに比例する 13 (ウ)xに比例しないが,xの一次関数である A(オ)の関数ではない B 図2 A D D E F E (イ)xに反比例する (エ)xの2乗に比例する H G H TOM (2) 次の文章は,xとyの関係について述べたものである。 文章中の ① ②に当てはまるも のを,下の(ア) ~ (オ) からそれぞれ1つずつ選びなさい。 (各5点) 0≦x≦4のとき,yは①。また,4≦x≦8のとき,yは② G () TESTEJA >$2001 - * (A) の点 AP 垂直な直線が、辺ABま をQ、辺BCまたはCDと (3)の値が2から3まで増加するときのyの増加量の6倍が,xの値が3から4まで増加するときのy の増加量と等しくなる。このときのαの値を求めなさい。 (10点) 0x12のときは0とする

回答募集中 回答数: 0